Dixon's Identity

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z_{\ge 0}$:

$\ds \sum_{k \mathop \in \Z} \paren {-1}^k \binom {2 n} {n + k}^3 = \dfrac {\paren {3 n}!} {\paren {n!}^3}$


General Case

For $l, m, n \in \Z_{\ge 0}$:

$\ds \sum_{k \mathop \in \Z} \paren {-1}^k \dbinom {l + m} {l + k} \dbinom {m + n} {m + k} \dbinom {n + l} {n + k} = \dfrac {\paren {l + m + n}!} {l! \, m! \, n!}$


Gaussian Binomial Form

For $l, m, n \in \Z_{\ge 0}$:

$\ds \sum_{k \mathop \in \Z} \paren {-1}^k \dbinom {m - r - s} k_q \dbinom {n + r - s} {n - k}_q \dbinom {r + k} {m + n}_q = \dbinom r m_q \dbinom s n_q$

where $\dbinom r m_q$ denotes a Gaussian binomial coefficient


Proof

Follows directly from Dixon's Identity/General Case:

$\ds \sum_{k \mathop \in \Z} \paren {-1}^k \dbinom {l + m} {l + k} \dbinom {m + n} {m + k} \dbinom {n + l} {n + k} = \dfrac {\paren {l + m + n}!} {l! \, m! \, n!}$

setting $l = m = n$.

$\blacksquare$


Source of Name

This entry was named for Alfred Cardew Dixon.


Sources

  • 1891: A.C. DixonOn the Sum of the Cubes of the Coefficients in a certain Expansion by the Binomial Theorem (Messenger Math. Vol. 20: pp. 79 – 80)