Dot Product Operator is Bilinear

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\mathbf u, \mathbf v, \mathbf w$ be vectors in the real Euclidean space $\R^n$.

Let $c$ be a real scalar.


Then:

$\paren {c \mathbf u + \mathbf v} \cdot \mathbf w = c \paren {\mathbf u \cdot \mathbf w} + \paren {\mathbf v \cdot \mathbf w}$


Proof

\(\ds \paren {c \mathbf u + \mathbf v} \cdot \mathbf w\) \(=\) \(\ds c \sum_{i \mathop = 1}^n \paren {u_i + v_i} w_i\) Definition of Dot Product
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {c u_i + v_i} w_i\) Real Multiplication Distributes over Real Addition
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {c u_i w_i + v_i w_i}\) Real Multiplication Distributes over Real Addition
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n c u_i w_i + \sum_{i \mathop = 1}^n v_i w_i\) Real Multiplication is Commutative
\(\ds \) \(=\) \(\ds c \sum_{i \mathop = 1}^n u_i w_i + \sum_{i \mathop = 1}^n v_i w_i\) Real Multiplication Distributes over Real Addition
\(\ds \) \(=\) \(\ds c \paren {\mathbf u \cdot \mathbf w} + \mathbf v \cdot \mathbf w\) Definition of Dot Product

$\blacksquare$