Dual Category is Category

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf C$ be a metacategory.

Let $\mathbf C^{\text{op} }$ be its dual category.


Then $\mathbf C^{\text{op} }$ is also a metacategory.


Proof

Let us verify the axioms $(C1)$ up to $(C3)$ for a metacategory.


Let $f^{\text{op} }: C^{\text{op} } \to D^{\text{op} }$ and $g^{\text{op} }: D^{\text{op} } \to E^{\text{op} }$ be morphisms in $\mathbf C^{\text{op} }$.

Then $f: D \to C$ and $g: E \to D$ are morphisms in $\mathbf C$, and so is $f \circ g: E \to C$.

Therefore, also $g^{\text{op} } \circ f^{\text{op} }: C^{\text{op} } \to E^{\text{op} }$ is a morphism in $\mathbf C^{\text{op} }$, and $(C1)$ is shown to hold.


For $(C2)$, observe that for $f^{\text{op} }: C^{\text{op} } \to D^{\text{op} }$, we have:

\(\ds f^{\text{op} } \circ \operatorname{id}_{C^{\text{op} } }\) \(=\) \(\ds f^{\text{op} } \circ \operatorname{id}_C^{\text{op} }\) Definition of $\operatorname{id}_{C^{\text{op} } }$
\(\ds \) \(=\) \(\ds \paren {\operatorname{id}_C \circ f}^{\text{op} }\) Definition of Composition of Morphisms
\(\ds \) \(=\) \(\ds f^{\text{op} }\) Since $\mathbf C$ is a metacategory

Similarly:

\(\ds \operatorname{id}_{D^{\text{op} } } \circ f^{\text{op} }\) \(=\) \(\ds \operatorname{id}_D^{\text{op} } \circ f^{\text{op} }\) Definition of $\operatorname{id}_{D^{\text{op} } }$
\(\ds \) \(=\) \(\ds \paren {f \circ \operatorname{id}_D}^{\text{op} }\) Definition of Composition of Morphisms
\(\ds \) \(=\) \(\ds f^{\text{op} }\) Since $\mathbf C$ is a metacategory

Hence $(C2)$ is shown to hold.


To show $(C3)$, reason as follows:

\(\ds \paren {f^{\text{op} } \circ g^{\text{op} } } \circ h^{\text{op} }\) \(=\) \(\ds \paren {g \circ f}^{\text{op} } \circ h^{\text{op} }\) Definition of Composition of Morphisms
\(\ds \) \(=\) \(\ds \paren {h \circ \paren {g \circ f} }^{\text{op} }\) Definition of Composition of Morphisms
\(\ds \) \(=\) \(\ds \paren {\paren {h \circ g} \circ f}^{\text{op} }\) Since $\mathbf C$ is a metacategory
\(\ds \) \(=\) \(\ds f^{\text{op} } \circ \paren {h \circ g}^{\text{op} }\)
\(\ds \) \(=\) \(\ds f^{\text{op} } \circ \paren {g^{\text{op} } \circ h^{\text{op} } }\)


Hence $\mathbf C^{\text{op} }$ is a metacategory.

$\blacksquare$