Eigenvalues of Symmetric Matrix are Orthogonal

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $K$ be a ring.

Let $A$ be a symmetric matrix over $K$.

Let $\lambda_1, \lambda_2$ be distinct eigenvalues of $A$.

Let $\mathbf v_1, \mathbf v_2$ be eigenvectors of $A$ corresponding to the eigenvalues $\lambda_1$ and $\lambda_2$ respectively.

Let $\innerprod \cdot \cdot$ be the dot product on $K$.




Then $\mathbf v_1$ and $\mathbf v_2$ are orthogonal with respect to $\innerprod \cdot \cdot$.


Proof

We have:

$A \mathbf v_1 = \lambda_1 \mathbf v_1$

and:

$A \mathbf v_2 = \lambda_2 \mathbf v_2$

We also have:

\(\ds \mathbf v_1^\intercal \paren {A \mathbf v_2}\) \(=\) \(\ds \mathbf v_1^\intercal \paren {\lambda_2 \mathbf v_2}\)
\(\ds \) \(=\) \(\ds \lambda_2 \innerprod {\mathbf v_1} {\mathbf v_2}\) Definition of Dot Product

and:

\(\ds \mathbf v_1^\intercal \paren {A \mathbf v_2}\) \(=\) \(\ds \paren {A^\intercal \mathbf v_1}^\intercal \mathbf v_2\) Transpose of Matrix Product
\(\ds \) \(=\) \(\ds \paren {A \mathbf v_1}^\intercal \mathbf v_2\) Definition of Symmetric Matrix
\(\ds \) \(=\) \(\ds \lambda_1 \paren {\mathbf v_1}^\intercal \mathbf v_2\)
\(\ds \) \(=\) \(\ds \lambda_1 \innerprod {\mathbf v_1} {\mathbf v_2}\) Definition of Dot Product

We therefore have:

$0 = \paren {\lambda_2 - \lambda_1} \innerprod {\mathbf v_1} {\mathbf v_2}$

Since $\lambda_1 \ne \lambda_2$, we have:

$\innerprod {\mathbf v_1} {\mathbf v_2} = 0$

hence $\mathbf v_1$ and $\mathbf v_2$ are orthogonal with respect to $\innerprod \cdot \cdot$.

$\blacksquare$