Element of Finite Group is of Finite Order

From ProofWiki
Jump to navigation Jump to search

Theorem

In any finite group, each element has finite order.


Proof 1

Let $G$ be a group whose identity is $e$.

From Element has Idempotent Power in Finite Semigroup, for every element in a finite semigroup, there is a power of that element which is idempotent.

As $G$, being a group, is also a semigroup, the same applies to $G$.


That is:

$\forall x \in G: \exists n \in \N_{>0}: x^n \circ x^n = x^n$


From Identity is only Idempotent Element in Group, it follows that:

$x^n \circ x^n = x^n \implies x^n = e$


So $x$ has finite order.

$\blacksquare$


Proof 2

Follows as a direct corollary to the result Powers of Infinite Order Element.

$\blacksquare$


Sources