Elementary Symmetric Function/Examples/m = 2

From ProofWiki
Jump to navigation Jump to search

Example of Elementary Symmetric Function: $m = 2$

Let $e_2 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)$ be an elementary symmetric function in $n$ variables of degree $2$.


Then:

\(\ds e_2 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)\) \(=\) \(\ds x_1 x_2 + x_1 x_3 + \cdots + x_1 x_n\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds x_2 x_3 + \cdots + x_2 x_n\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \cdots\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds x_{n - 1} x_n\)


Proof

By definition:

\(\ds e_2 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)\) \(=\) \(\ds \sum_{1 \mathop \le j_1 < j_2 \mathop \le n} \left({\prod_{i \mathop = 1}^2 x_{j_i} }\right)\)
\(\ds \) \(=\) \(\ds \sum_{1 \mathop \le j_1 < j_2 \mathop \le n} x_{j_1} x_{j_2}\)
\(\ds \) \(=\) \(\ds x_1 x_2 + x_1 x_3 + \cdots + x_1 x_n\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds x_2 x_3 + \cdots + x_2 x_n\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \cdots\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds x_{n - 1} x_n\)

$\blacksquare$