Epimorphism Preserves Modules
Theorem
Let $\struct {G, +_G, \circ}_R$ be an $R$-module.
Let $\struct {H, +_H, \circ}_R$ be an $R$-algebraic structure.
Let $\phi: G \to H$ be an epimorphism.
Then $H$ is an $R$-module.
Corollary
Let $\struct {G, +_G, \circ}_R$ be an unitary $R$-module.
Let $\struct {H, +_H, \circ}_R$ be an $R$-algebraic structure.
Let $\phi: G \to H$ be an epimorphism.
Then $H$ is a unitary $R$-module.
If $G$ is a unitary $R$-module, then so is $H$.
Proof
If $\struct {G, +_G, \circ}_R$ is an $R$-module, then:
$\forall x, y, \in G, \forall \lambda, \mu \in R$:
- $(1): \quad \lambda \circ \paren {x +_G y} = \paren {\lambda \circ x} +_G \paren {\lambda \circ y}$
- $(2): \quad \paren {\lambda +_R \mu} \circ x = \paren {\lambda \circ x} +_G \paren {\mu \circ x}$
- $(3): \quad \paren {\lambda \times_R \mu} \circ x = \lambda \circ \paren {\mu \circ x}$
If $\phi: G \to H$ is an epimorphism, then:
- $\forall x, y \in G: \map \phi {x +_G y} = \map \phi x +_H \map \phi y$
- $\forall x \in S: \forall \lambda \in R: \map \phi {\lambda \circ x} = \lambda \circ \map \phi x$
- $\forall y \in H: \exists x \in G: y = \map \phi x$
As $\phi$ is an epimorphism, we can accurately specify the behaviour of all elements of $H$, as they are the images of elements of $G$.
If $\phi$ were not an epimorphism, that is not surjective, we would have no way of knowing the behaviour of elements of $H$ outside of the image of $G$.
Hence the specification that $\phi$ needs to be an epimorphism.
Now we check the module axioms in turn.
Module Axiom $\text M 1$: Distributivity over Module Addition
\(\ds \lambda \circ \paren {\map \phi x +_H \map \phi y}\) | \(=\) | \(\ds \lambda \circ \paren {\map \phi {x +_G y} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {\lambda \circ \paren {x +_G y} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {\paren {\lambda \circ x} +_G \paren {\lambda \circ y} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {\lambda \circ x} +_H \map \phi {\lambda \circ y}\) |
Thus Module Axiom $\text M 1$: Distributivity over Module Addition is shown to hold for $H$.
Module Axiom $\text M 2$: Distributivity over Scalar Addition
\(\ds \paren {\lambda +_R \mu} \circ \map \phi x\) | \(=\) | \(\ds \map \phi {\paren {\lambda +_R \mu} \circ x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {\paren {\lambda \circ x} +_G \paren {\mu \circ x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {\lambda \circ x} +_H \map \phi {\mu \circ x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \circ \map \phi x +_H \mu \circ \map \phi x\) |
Thus Module Axiom $\text M 2$: Distributivity over Scalar Addition is shown to hold for $H$.
Module Axiom $\text M 3$: Associativity
\(\ds \paren {\lambda \times_R \mu} \circ \map \phi x\) | \(=\) | \(\ds \map \phi {\paren {\lambda \times_R \mu} \circ x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {\lambda \circ \paren {\mu \circ x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \circ \paren {\map \phi {\mu \circ x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \circ \paren {\mu \circ \map \phi x}\) |
Thus Module Axiom $\text M 3$: Associativity is shown to hold for $H$.
So all the module axioms for $H$ are satisfied.
$\blacksquare$
Also see
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {V}$: Vector Spaces: $\S 28$. Linear Transformations