Equation of Cycloid in Cartesian Coordinates

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider a circle of radius $a$ rolling without slipping along the $x$-axis of a cartesian plane.

Consider the point $P$ on the circumference of this circle which is at the origin when its center is on the y-axis.

Consider the cycloid traced out by the point $P$.

Let $\tuple {x, y}$ be the coordinates of $P$ as it travels over the plane.


The point $P = \tuple {x, y}$ is described by the equation:

$a \sin^{-1} \paren {\dfrac {\sqrt {2 a y - y^2} } a} = \sqrt {2 a y - y^2} + x$


Proof

From Equation of Cycloid, the point $P = \tuple {x, y}$ is described by the equations:

$x = a \paren {\theta - \sin \theta}$
$y = a \paren {1 - \cos \theta}$


Expressing $\theta$ and $\sin \theta$ in terms of $y$:

\(\ds \cos \theta\) \(=\) \(\ds 1 - \frac y a\)
\(\ds \leadsto \ \ \) \(\ds \sin \theta\) \(=\) \(\ds \sqrt {1 - \paren {1 - \frac y a}^2}\)
\(\ds \) \(=\) \(\ds \sqrt {\frac {2 y} a - \frac {y^2} {a^2} }\)
\(\ds \) \(=\) \(\ds \frac {\sqrt {2 a y - y^2} } a\)
\(\ds \leadsto \ \ \) \(\ds \theta\) \(=\) \(\ds \sin^{-1} \paren {\frac {\sqrt {2 a y - y^2} } a}\)


Substituting for $\theta$ and $\sin \theta$ in the expression for $x$:

\(\ds x\) \(=\) \(\ds a \paren {\sin^{-1} \paren {\frac {\sqrt {2 a y - y^2} } a} - \frac 1 a \sqrt {2 a y - y^2} }\)
\(\ds \leadsto \ \ \) \(\ds a \sin^{-1} \paren {\frac {\sqrt {2 a y - y^2} } a}\) \(=\) \(\ds \sqrt {2 a y - y^2} + x\)

$\blacksquare$


Sources