Equation of Straight Line in Plane/Two-Point Form/Parametric Form

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\LL$ be a straight line embedded in a cartesian plane, given in two-point form as:

$\dfrac {x - x_1} {x_2 - x_1} = \dfrac {y - y_1} {y_2 - y_1}$


Then $\LL$ can be expressed by the parametric equations:

$\begin {cases} x = x_1 + t \paren {x_2 - x_1} \\ y = y_1 + t \paren {y_2 - y_1} \end {cases}$


Proof

Let $P = \tuple {x, y}$ be an arbitrary point on $\LL$.

Let $t = \dfrac {x - x_1} {x_2 - x_1} = \dfrac {y - y_1} {y_2 - y_1}$.


We then have:

\(\ds t\) \(=\) \(\ds \dfrac {x - x_1} {x_2 - x_1}\)
\(\ds \leadsto \ \ \) \(\ds x - x_1\) \(=\) \(\ds t \paren {x_2 - x_1}\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds x_1 + t \paren {x_2 - x_1}\)
\(\ds t\) \(=\) \(\ds \dfrac {y - y_1} {y_2 - y_1}\)
\(\ds \leadsto \ \ \) \(\ds y - y_1\) \(=\) \(\ds t \paren {y_2 - y_1}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds y_1 + t \paren {y_2 - y_1}\)

The result follows.

$\blacksquare$


Sources