Equivalence Class of Equal Elements of Cross-Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be a commutative semigroup with cancellable elements.

Let $\struct {C, \circ {\restriction_C} } \subseteq \struct {S, \circ}$ be the subsemigroup of cancellable elements of $\struct {S, \circ}$, where $\circ {\restriction_C}$ denotes the restriction of $\circ$ to $C$.


Let $\struct {S_1, \circ {\restriction_1} } \subseteq \struct {S, \circ}$ be a subsemigroup of $S$.

Let $\struct {S_2, \circ {\restriction_2} } \subseteq \struct {C, \circ {\restriction_C} }$ be a subsemigroup of $C$.


Let $\left({S_1 \times S_2, \oplus}\right)$ be the (external) direct product of $\struct {S_1, \circ {\restriction_1} }$ and $\struct {S_2, \circ {\restriction_2} }$, where $\oplus$ is the operation on $S_1 \times S_2$ induced by $\circ {\restriction_1}$ on $S_1$ and $\circ {\restriction_2}$ on $S_2$.


Let $\boxtimes$ be the cross-relation on $S_1 \times S_2$, defined as:

$\tuple {x_1, y_1} \boxtimes \tuple {x_2, y_2} \iff x_1 \circ y_2 = x_2 \circ y_1$


Then:

$\forall c, d \in S_1 \cap S_2: \tuple {c, c} \boxtimes \tuple {d, d}$


Proof

Note that in order for $\tuple {c, c}$ and $\tuple {d, d}$ to be defined, $c$ and $d$ must be in both $S_1$ and $S_2$.

Hence the restriction given:

$\forall c, d \in S_1 \cap S_2$


Then:

\(\ds \forall c, d \in S_1 \cap S_2: \, \) \(\ds c \circ d\) \(=\) \(\ds d \circ c\) Commutativity of $\circ$
\(\ds \leadsto \ \ \) \(\ds \tuple {c, c}\) \(\boxtimes\) \(\ds \tuple {d, d}\) Definition of $\boxtimes$

Hence the result.

$\blacksquare$


Sources