Equivalence of Definitions of Asymmetric Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Asymmetric Relation are equivalent:

Definition 1

$\RR$ is asymmetric if and only if:

$\tuple {x, y} \in \RR \implies \tuple {y, x} \notin \RR$

Definition 2

$\RR$ is asymmetric if and only if it and its inverse are disjoint:

$\RR \cap \RR^{-1} = \O$


Proof

Definition 1 implies Definition 2

Let $\RR$ be a relation which fulfills the condition:

$\left({x, y}\right) \in \RR \implies \left({y, x}\right) \notin \RR$


Then:

\(\ds \tuple {x, y}\) \(\in\) \(\ds \RR\)
\(\ds \leadsto \ \ \) \(\ds \tuple {y, x}\) \(\notin\) \(\ds \RR\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds \tuple {x, y}\) \(\notin\) \(\ds \RR^{-1}\) Definition of Inverse Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, y}\) \(\in\) \(\ds \map \complement {\RR^{-1} }\) Definition of Set Complement
\(\ds \leadsto \ \ \) \(\ds \RR\) \(\subseteq\) \(\ds \map \complement {\RR^{-1} }\) Definition of Subset
\(\ds \leadsto \ \ \) \(\ds \RR \cap \RR^{-1}\) \(=\) \(\ds \O\) Empty Intersection iff Subset of Complement


Hence $\RR$ is asymmetric by definition 2.

$\Box$


Definition 2 implies Definition 1

Let $\RR$ be a relation which fulfils the condition:

$\RR \cap \RR^{-1} = \O$


Then:

\(\ds \tuple {x, y}\) \(\in\) \(\ds \RR\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x, y}\) \(\notin\) \(\ds \RR^{-1}\) as $\RR \cap \RR^{-1} = \O$

Hence $\RR$ is asymmetric by definition 1.

$\blacksquare$