Equivalence of Definitions of Bounded Variation for Real Function on Closed Bounded Interval

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b$ be real numbers with $a < b$.

Let $f : \closedint a b \to \R$ be a real function.


The following definitions of the concept of Bounded Variation (Closed Bounded Interval) are equivalent:

Definition 1

For each finite subdivision $P$ of $\closedint a b$, write:

$P = \set {x_0, x_1, \ldots, x_n}$

with:

$a = x_0 < x_1 < x_2 < \cdots < x_{n - 1} < x_n = b$

Also write:

$\ds \map {V_f} {P ; \closedint a b} = \sum_{i \mathop = 1}^n \size {\map f {x_i} - \map f {x_{i - 1} } }$


We say $f$ is of bounded variation if and only if there exists an $M \ge 0$ such that:

$\map {V_f} {P ; \closedint a b} \le M$

for all finite subdivisions $P$.


Definition 2

For each finite non-empty subset $\mathcal S$ of $\closedint a b$, write:

$\mathcal S = \set {x_0, x_1, \ldots, x_n}$

with:

$a \le x_0 < x_1 < x_2 < \cdots < x_{n - 1} < x_n \le b$

Also write:

$\ds \map {V_f^\ast} {\mathcal S; \closedint a b} = \sum_{i \mathop = 1}^n \size {\map f {x_i} - \map f {x_{i - 1} } }$


We say $f$ is of bounded variation if and only if there exists an $M \ge 0$ such that:

$\map {V_f^\ast} {\mathcal S; \closedint a b} \le M$

for all finite non-empty subsets $\mathcal S$ of $\closedint a b$.


Proof

Definition 1 implies Definition 2

Suppose that there exists a $M \in \R$ such that:

$\map {V_f} {P ; \closedint a b} \le M$

for all finite subdivisions $P$.

Let $\SS$ be a finite non-empty subset of $\closedint a b$.

Define:

$\SS^\ast = \SS \cup \set {a, b}$

and write:

$\SS^\ast = \set {x_0, x_1, \ldots, x_n}$

with:

$a = x_0 < x_1 < x_2 < \cdots < x_{n - 1} < x_n = b$

Then $\SS^\ast$ is a finite subdivision of $\closedint a b$ and:

\(\ds \map {V_f^\ast} {\SS; \closedint a b}\) \(=\) \(\ds \sum_{i \mathop = 2}^{n - 1} \size {\map f {x_i} - \map f {x_{i - 1} } }\)
\(\ds \) \(\le\) \(\ds \size {\map f {x_1} - \map f {x_0} } + \sum_{i \mathop = 2}^{n - 1} \size {\map f {x_i} - \map f {x_{i - 1} } } + \size {\map f {x_n} - \map f {x_{n - 1} } }\)
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \size {\map f {x_i} - \map f {x_{i - 1} } }\)
\(\ds \) \(=\) \(\ds \map {V_f} {\SS^\ast ; \closedint a b}\)
\(\ds \) \(\le\) \(\ds M\)

so:

$\map {V_f^\ast} {\SS; \closedint a b} \le M$

for all finite non-empty subset of $\closedint a b$.

$\Box$

Definition 2 implies Definition 1

Suppose that there exists a $M \in \R$ such that:

$\map {V_f^\ast} {\SS; \closedint a b} \le M$

for all finite non-empty subsets $\SS$ of $\closedint a b$.

Note that any finite subdivision of $\closedint a b$ is also a finite non-empty subset of $\closedint a b$.

So, in particular, for any finite subdivision $P$ of $\closedint a b$, we have:

$\map {V_f} {P ; \closedint a b} = \map {V_f^\ast} {P ; \closedint a b} \le M$

as required.

$\blacksquare$