Equivalence of Definitions of Complete Elliptic Integral of the First Kind

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Complete Elliptic Integral of the First Kind are equivalent:

Definition 1

$\ds \map K k = \int \limits_0^{\pi / 2} \frac {\d \phi} {\sqrt {1 - k^2 \sin^2 \phi} }$

is the complete elliptic integral of the first kind, and is a function of $k$, defined on the interval $0 < k < 1$.

Definition 2

$\ds \map K k = \int \limits_0^1 \frac {\d v} {\sqrt {\paren {1 - v^2} \paren {1 - k^2 v^2} } }$

is the complete elliptic integral of the first kind, and is a function of $k$, defined on the interval $0 < k < 1$.


Proof

Let $\map K k$ be the complete elliptic integral of the first kind by definition $1$.


Let $v := \sin \phi$.

Then we have:

\(\ds \dfrac {\d v} {\d \phi}\) \(=\) \(\ds \cos \phi\) Derivative of Sine Function
\(\ds \phi\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds 0\)
\(\ds \phi\) \(=\) \(\ds \dfrac \pi 2\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds 1\)


Hence:

\(\ds \map K k\) \(=\) \(\ds \int \limits_0^{\pi / 2} \frac {\d \phi} {\sqrt {1 - k^2 \sin^2 \phi} }\) Definition 1 of Complete Elliptic Integral of the First Kind
\(\ds \) \(=\) \(\ds \int \limits_0^1 \frac {\d v} {\cos \phi \sqrt {1 - k^2 \sin^2 \phi} }\) Integration by Substitution
\(\ds \) \(=\) \(\ds \int \limits_0^1 \frac {\d v} {\sqrt {1 - \sin^2 \phi} \sqrt {1 - k^2 \sin^2 \phi} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \int \limits_0^1 \frac {\d v} {\sqrt {1 - v^2} \sqrt {1 - k^2 v^2} }\) substituting for $v$
\(\ds \) \(=\) \(\ds \int \limits_0^1 \frac {\d v} {\sqrt {\paren {1 - v^2} \paren {1 - k^2 v^2} } }\) making the equivalence explicit


Thus $\map K k$ is the complete elliptic integral of the first kind by definition $2$.

$\blacksquare$