Equivalence of Definitions of Convex Set (Order Theory)

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Convex Set in the context of Order Theory are equivalent:

Definition 1

A subset $A$ of an ordered set $\struct {S, \preceq}$ is convex (in $S$) if and only if:

$\forall x, y \in A: \forall z \in S: x \preceq z \preceq y \implies z \in A$

Definition 2

A subset $A$ of an ordered set $\struct {S, \preceq}$ is convex (in $S$) if and only if:

$\forall x, y \in A: \forall z \in S: x \prec z \prec y \implies z \in A$


Proof

$(1)$ implies $(2)$

Let $A \subseteq S$ be convex in $S$ by definition 1.

Then by definition:

$\forall x, y \in A: \forall z \in S: x \preceq z \preceq y \implies z \in A$

Let $x, y, z \in A$.

Let $x \prec z \prec y$.

Then by definition:

$x \preceq z \preceq y$

and so by hypothesis $z \in A$.

That is:

$\forall x, y \in A: \forall z \in S: x \prec z \prec y \implies z \in A$

Thus $A \subseteq S$ is convex in $S$ by definition 2.

$\Box$


$(2)$ implies $(1)$

Let $A \subseteq S$ be convex in $S$ by definition 2.

Then by definition:

$\forall x, y \in A: \forall z \in S: x \prec z \prec y \implies z \in A$

Let $x, y, z \in A$.

Let $x \preceq z \preceq y$.

First suppose $z \ne x$ and $z \ne y$.

Then by definition of the relation $\prec$:

$x \prec z \prec y$

and so by hypothesis $z \in A$.

Let $x = z$ or $x = y$

We have that $x \in A$ and $y \in A$.

So $z \in A$.

That is, whether $x \prec z \prec y$ or $z = x$ or $x = y$:

$\forall x, y \in A: \forall z \in S: x \preceq z \preceq y \implies z \in A$

Thus $A \subseteq S$ is convex in $S$ by definition 1.

$\blacksquare$