Equivalence of Definitions of Extreme Point of Convex Set

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Extreme Point of Convex Set are equivalent:

Let $X$ be a vector space over $\R$.

Let $K$ be a convex subset of $X$.

Definition 1

We say that $a$ is an extreme point of $K$ if and only if:

whenever $a = t x + \paren {1 - t} y$ for $t \in \openint 0 1$, we have $x = y = a$.

Definition 2

We say that $a$ is an extreme point of $K$ if and only if:

$K \setminus \set a$ is convex.


Proof

Definition 1 implies Definition 2

Suppose that:

whenever $a = t x + \paren {1 - t} y$ for $t \in \openint 0 1$, we have $x = y = a$.

Then, if $x, y \in K \setminus \set a$ and $t \in \openint 0 1$, we have:

$t x + \paren {1 - t} y \ne a$

If $t = 0$, then we have:

$t x + \paren {1 - t} y = y \ne a$

and if $t = 1$ we have:

$t x + \paren {1 - t} y = x \ne a$

So if $x, y \in K \setminus \set a$ and $t \in \closedint 0 1$ we have:

$t x + \paren {1 - t} y \ne a$

Since $K$ is convex, we have:

$t x + \paren {1 - t} y \in K$

so we have:

$t x + \paren {1 - t} y \in K \setminus \set a$

so:

$K \setminus \set a$ is convex.

$\Box$


Definition 2 implies Definition 1

Suppose:

$K \setminus \set a$ is convex.

Then for all $x, y \in K \setminus \set a$ and $t \in \closedint 0 1$ we have:

$t x + \paren {1 - t} y \in K \setminus \set a$

In particular, if $t \in \openint 0 1$ and $x, y \in K \setminus \set a$, we have:

$t x + \paren {1 - t} y \ne a$

We also have that:

$t a + \paren {1 - t} a = a$

Hence, if $x, y \in K$ and $t \in \openint 0 1$ have:

$t x + \paren {1 - t} y = a$

then:

$x = y = a$

$\blacksquare$