Equivalence of Definitions of Limit Inferior of Sequence of Sets

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Limit Inferior of Sequence of Sets are equivalent:

Definition 1

Let $\sequence {E_n : n \in \N}$ be a sequence of sets.


Then the limit inferior of $\sequence {E_n : n \in \N}$, denoted $\ds \liminf_{n \mathop \to \infty} E_n$, is defined as:

\(\ds \liminf_{n \mathop \to \infty} E_n\) \(:=\) \(\ds \bigcup_{n \mathop = 0}^\infty \bigcap_{i \mathop = n}^\infty E_n\)
\(\ds \) \(=\) \(\ds \paren {E_0 \cap E_1 \cap E_2 \cap \ldots} \cup \paren {E_1 \cap E_2 \cap E_3 \cap \ldots} \cup \cdots\)

Definition 2

Let $\sequence {E_n : n \in \N}$ be a sequence of sets.


Then the limit inferior of $\sequence {E_n : n \in \N}$, denoted $\ds \liminf_{n \mathop \to \infty} E_n$, is defined as:

$\ds \liminf_{n \mathop \to \infty} E_n := \set {x: x \in E_i \text { for all but finitely many } i}$


Proof

Let $\sequence {E_n : n \in \N}$ be a sequence of sets.

Let:

$\ds B_n := \bigcap_{j \mathop = n}^\infty E_j$

Let:

$\ds \liminf_{n \mathop \to \infty} E_n := \bigcup_{n \mathop = 0}^\infty B_n$

that is, $\ds \liminf_{n \mathop \to \infty} \ E_n$ according to definition 1.


Let:

$E := \set {x: x \in E_i \text{ for all but finitely many } i}$

that is, $\ds \liminf_{n \mathop \to \infty} E_n$ according to definition 2.


By definition of set equality, it is enough to prove:

$\ds \liminf_{n \mathop \to \infty} E_n \subseteq E$

and:

$E \subseteq \ds \liminf_{n \mathop \to \infty} E_n$


From Set Complement inverts Subsets, we have:

$\ds \map \complement E \subseteq \map \complement {\liminf_{n \mathop \to \infty} E_n} \iff \liminf_{n \mathop \to \infty} E_n \subseteq E$

The strategy will therefore be to prove:

$\ds E \subseteq \liminf_{n \mathop \to \infty} E_n$

and:

$\ds \map \complement E \subseteq \map \complement {\liminf_{n \mathop \to \infty} E_n}$


Definition $2$ is contained in Definition $1$

Let $x \in E$.

By definition $x$ is in all but a finite number of $E_i$.

Let $m \in \Z_{\ge 0}$ be the largest integer such that $x \notin E_m$.

$m$ has to exist, because the set $\set {i \in \N: x \notin E_i}$ is a finite set.


Let $M \in \Z$ such that $m < M$.

Then as $x \in E_j$ for all $j > m$ it follows by definition of set intersection that:

$x \in B_M = \ds \bigcap_{j \mathop = M}^\infty E_j$

From the definition of set union, it follows that:

$x \in \ds \bigcup_{n \mathop = 0}^\infty B_n = \liminf_{n \mathop \to \infty} E_n$

Hence:

$E \subseteq \ds \liminf_{n \mathop \to \infty} E_n$

$\Box$


Complement of Definition 2 is contained in Complement of Definition 1

Let $x \in \map \complement E$

That is, $x \notin E$.

The definition of $E$ grants the existence of a strictly increasing sequence $\sequence {i_n}$ of natural numbers, such that:

$\forall n \in \N: x \notin E_{i_n}$

It follows that for every $k \in \N$, there exists an $n \in \Z$ with $i_n > k$.

Subsequently, from the definition of set intersection:

$B_k = \ds \bigcap_{j \mathop = k}^\infty E_j \subseteq E_{i_n}$

and hence $x \notin B_k$.

As $k$ was arbitrary, we have:

$x \notin \ds \bigcup_{k \mathop = 0}^\infty B_k = \liminf_{n \mathop \to \infty} E_n$

It follows that:

$\ds \map \complement E \subseteq \map \complement {\liminf_{n \mathop \to \infty} E_n}$

$\Box$


Therefore, we have established that

$x \in \ds \liminf_{n \mathop \to \infty} E_n \iff x \in E$

From the definition of set equality, it follows that:

$\ds \liminf_{n \mathop \to \infty} E_n = E$

$\blacksquare$


Also see


Sources