Equivalence of Definitions of Symmetric Difference/(3) iff (5)

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

The following definitions of the concept of symmetric difference $S \symdif T$ between $S$ and $T$ are equivalent:

Definition 3

$S \symdif T = \paren {S \cap \overline T} \cup \paren {\overline S \cap T}$

Definition 5

$S \symdif T := \set {x: x \in S \oplus x \in T}$


Proof

\(\ds \) \(\) \(\ds x \in S \symdif T\)
\(\ds \) \(\leadstoandfrom\) \(\ds x \in S \oplus x \in T\) Definition 5 of Symmetric Difference
\(\ds \) \(\leadstoandfrom\) \(\ds \paren {\neg \paren {x \in S} \land \paren {x \in T} } \lor \paren {\paren {x \in S} \land \neg \paren {x \in T} }\) Non-Equivalence as Disjunction of Conjunctions
\(\ds \) \(\leadstoandfrom\) \(\ds \paren {x \in \overline S \land x \in T} \lor \paren {x \in S \land x \in \overline T}\) Definition of Set Complement
\(\ds \) \(\leadstoandfrom\) \(\ds \paren {x \in \overline S \cup T} \lor \paren {x \in S \cup \overline T}\) Definition of Set Intersection
\(\ds \) \(\leadstoandfrom\) \(\ds x \in \paren {\overline S \cup T} \cup \paren {S \cup \overline T}\) Definition of Set Union
\(\ds \) \(\leadstoandfrom\) \(\ds x \in \paren {S \cup \overline T} \cup \paren {\overline S \cup T}\) Union is Commutative

The result follows by definition of set equality.

$\blacksquare$