Equivalence of Definitions of Unique Existential Quantifier

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Unique Existential Quantifier are equivalent:

Definition 1

There exists a unique object $x$ such that $\map P x$, denoted $\exists ! x: \map P x$, if and only if:

$\exists x : \paren {\map P x \land \forall y : \paren {\map P y \implies x = y} }$


In natural language, this means:

There exists exactly one $x$ with the property $P$
is logically equivalent to:
There exists an $x$ such that $x$ has the property $P$, and for every $y$, $y$ has the property $P$ only if $x$ and $y$ are the same object.

Definition 2

There exists a unique object $x$ such that $\map P x$, denoted $\exists ! x: \map P x$, if and only if:

$\exists x : \forall y : \paren {\map P y \iff x = y}$

Definition 3

There exists a unique object $x$ such that $\map P x$, denoted $\exists ! x: \map P x$, if and only if both:

$\exists x : \map P x$

and:

$\forall y : \forall z : \paren {\paren {\map P y \land \map P z} \implies y = z }$


Proof

Definition 1 iff Definition 2

Suppose Definition 1, that for some $x$, both:

$(1): \quad \map P x$

and:

$(2): \quad \forall y : \paren {\map P y \implies x = y}$

From $(1)$:

$x = y \implies \map P y$

From this and $(2)$, we conclude:

$\exists x : \forall y : \paren {\map P y \iff x = y}$


Suppose Definition 2, that for some $x$ and every $y$:

$\map P y \iff x = y$

Taking $y = x$ yields:

$x = x \implies \map P x$

implying that $\map P x$.

Thus we conclude:

$\exists x : \paren {\map P x \land \forall y : \paren {\map P y \implies x = y} }$

$\Box$

Definition 2 iff Definition 3

Suppose Definition 2, that for some $x$:

$(1): \quad \forall y : \paren {\map P y \iff x = y}$

Taking $y = x$ yields:

$x = x \implies \map P x$

implying that $\exists x : \map P x$.

Suppose $\map P y$ and $\map P z$ for arbitrary $y$ and $z$.

Then from $(1)$, $y = x$ and $z = x$, giving:

$\forall y : \forall z : \paren {\paren {\map P y \land \map P z} \implies y = z}$


Suppose Definition 3, that:

$(1): \quad \exists x : \map P x$

and for arbitrary $y$ and $z$:

$(2): \quad \paren { \map P y \land \map P z } \implies y = z$

From $(2)$, take $z = x$:

$\paren {\map P y \land \map P x} \implies y = x$

Thus, by $(1)$:

$\map P y \implies x = y$

Suppose $x = y$.

From $(1)$, $\map P x$, yielding:

$x = y \implies \map P y$

Thus:

$\exists x : \forall y : \paren {\map P y \iff x = y}$

$\Box$

Definition 1 iff Definition 3

Suppose Definition 1, that for some $x$:

$(1): \quad \map P x$

and:

$(2): \quad \forall y : \paren {\map P y \implies x = y}$

Suppose that $\map P y$ and $\map P z$ for arbitrary $y$ and $z$.

From $(2)$, there is an $x$ such that $x = y$ and $x = z$.

Thus, for arbitrary $y$ and $z$:

$\paren {\map P y \land \map P z} \implies y = z$

and from $(1)$:

$\exists x : \map P x$


Suppose Definition 3, that there is an $x$ such that:

$(1): \quad \map P x$

and that for arbitrary $y$ and $z$:

$(2): \quad \paren {\map P y \land \map P z} \implies y = z$

Taking $z = x$, we have from $(2)$:

$\paren {\map P y \land \map P x} \implies y = x$

Thus, from $\map P x$ in $(1)$:

$\forall y : \paren {\map P y \implies x = y}$

Thus:

$\exists x : \paren {\map P x \land \forall y : \paren {\map P y \implies x = y} }$

$\Box$