Equivalence of Definitions of Unique Existential Quantifier/Definition 1 iff Definition 3

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Unique Existential Quantifier are equivalent:

Definition 1

There exists a unique object $x$ such that $\map P x$, denoted $\exists ! x: \map P x$, if and only if:

$\exists x : \paren {\map P x \land \forall y : \paren {\map P y \implies x = y} }$


In natural language, this means:

There exists exactly one $x$ with the property $P$
is logically equivalent to:
There exists an $x$ such that $x$ has the property $P$, and for every $y$, $y$ has the property $P$ only if $x$ and $y$ are the same object.

Definition 3

There exists a unique object $x$ such that $\map P x$, denoted $\exists ! x: \map P x$, if and only if both:

$\exists x : \map P x$

and:

$\forall y : \forall z : \paren {\paren {\map P y \land \map P z} \implies y = z }$


Proof

Suppose Definition 1, that for some $x$:

$(1): \quad \map P x$

and:

$(2): \quad \forall y : \paren {\map P y \implies x = y}$

Suppose that $\map P y$ and $\map P z$ for arbitrary $y$ and $z$.

From $(2)$, there is an $x$ such that $x = y$ and $x = z$.

Thus, for arbitrary $y$ and $z$:

$\paren {\map P y \land \map P z} \implies y = z$

and from $(1)$:

$\exists x : \map P x$


Suppose Definition 3, that there is an $x$ such that:

$(1): \quad \map P x$

and that for arbitrary $y$ and $z$:

$(2): \quad \paren {\map P y \land \map P z} \implies y = z$

Taking $z = x$, we have from $(2)$:

$\paren {\map P y \land \map P x} \implies y = x$

Thus, from $\map P x$ in $(1)$:

$\forall y : \paren {\map P y \implies x = y}$

Thus:

$\exists x : \paren {\map P x \land \forall y : \paren {\map P y \implies x = y} }$

$\blacksquare$