Equivalence of Definitions of Vector Cross Product
Theorem
The following definitions of the concept of Vector Cross Product are equivalent:
Definition 1
The vector cross product, denoted $\mathbf a \times \mathbf b$, is defined as:
- $\mathbf a \times \mathbf b = \begin{vmatrix} \mathbf i & \mathbf j & \mathbf k\\ a_i & a_j & a_k \\ b_i & b_j & b_k \\ \end{vmatrix}$
where $\begin {vmatrix} \ldots \end {vmatrix}$ is interpreted as a determinant.
More directly:
- $\mathbf a \times \mathbf b = \paren {a_j b_k - a_k b_j} \mathbf i - \paren {a_i b_k - a_k b_i} \mathbf j + \paren {a_i b_j - a_j b_i} \mathbf k$
Definition 2
The vector cross product, denoted $\mathbf a \times \mathbf b$, is defined as:
- $\mathbf a \times \mathbf b = \norm {\mathbf a} \norm {\mathbf b} \sin \theta \, \mathbf {\hat n}$
where:
- $\norm {\mathbf a}$ denotes the length of $\mathbf a$
- $\theta$ denotes the angle from $\mathbf a$ to $\mathbf b$, measured in the positive direction
- $\hat {\mathbf n}$ is the unit vector perpendicular to both $\mathbf a$ and $\mathbf b$ in the direction according to the right-hand rule.
Proof
Let $\mathbf a \times \mathbf b$ be a vector cross product by definition $2$.
Then by definition:
- $(1): \quad \mathbf a \times \mathbf b = \norm {\mathbf a} \norm {\mathbf b} \sin \theta \, \mathbf {\hat n}$
By Angle Between Vectors in Terms of Dot Product:
- $\cos \theta = \ds \frac {\mathbf a \cdot \mathbf b} {\norm {\mathbf a} \norm {\mathbf b} }$
Note that $\theta$ is measured from $0$ to $\pi$.
If $\dfrac \pi 2 < \theta < \pi$, the dot product is negative and it exists in quadrant $2$.
The sine ratio is unaltered.
This gives:
\(\ds \sin \theta\) | \(=\) | \(\ds \frac {\sqrt {\paren {\norm {\mathbf a} \norm {\mathbf b} }^2 - \paren {\mathbf a \cdot \mathbf b}^2} } {\norm {\mathbf a} \norm {\mathbf b} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \mathbf a \times \mathbf b\) | \(=\) | \(\ds \norm {\mathbf a} \norm {\mathbf b} \ds \frac {\sqrt {\paren {\norm {\mathbf a} \norm {\mathbf b} }^2 - \paren {\mathbf a \cdot \mathbf b}^2} } {\norm {\mathbf a} \norm {\mathbf b} } \mathbf {\hat n}\) | substituting for $\sin \theta$ in $(1)$ | ||||||||||
\(\text {(2)}: \quad\) | \(\ds \) | \(=\) | \(\ds \sqrt {\paren {\norm {\mathbf a} \norm {\mathbf b} }^2 - \paren {\mathbf a \cdot \mathbf b}^2} \mathbf {\hat n}\) | cancelling |
![]() | This page has been identified as a candidate for refactoring of advanced complexity. In particular: There are clear parallels with Square of Norm of Vector Cross Product; can we extract and abstract and merge? Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
Next we have:
\(\ds \paren {\norm {\mathbf a} \norm {\mathbf b} }^2\) | \(=\) | \(\ds \paren {\sqrt { {a_i}^2 + {a_j}^2 + {a_k}^2} \sqrt { {b_i}^2 + {b_j}^2 + {b_k}^2} }^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren { {a_i}^2 + {a_j}^2 + {a_k}^2} \paren { {b_i}^2 + {b_j}^2 + {b_k} ^2}\) | ||||||||||||
\(\text {(3)}: \quad\) | \(\ds \) | \(=\) | \(\ds {a_i}^2 {b_i}^2 + {a_i}^2 {b_j}^2 + {a_i}^2 {b_k}^2 + {a_j}^2 {b_i}^2 + {a_j}^2 {b_j}^2 + {a_j}^2 {b_k}^2 + {a_k}^2 {b_i}^2 + {a_k}^2 {b_j}^2 + {a_k}^2 {b_k}^2\) |
Then:
\(\ds \paren {\mathbf a \cdot \mathbf b}^2\) | \(=\) | \(\ds \paren {a_i b_i + a_j b_j + a_k b_k}^2\) | Definition of Dot Product | |||||||||||
\(\text {(4)}: \quad\) | \(\ds \) | \(=\) | \(\ds {a_i}^2 {b_1}^2 + 2 a_i b_i a_j b_j + {a_j}^2 {b_j}^2 + 2 a_i b_i a_k b_k + {a_k}^2 {b_k}^2 + 2 a_j b_j a_k b_k\) | multiplying out |
Hence:
\(\ds \paren {\norm {\mathbf a} \norm {\mathbf b} }^2 - \paren {\mathbf a \cdot \mathbf b}^2\) | \(=\) | \(\ds \paren { {a_i}^2 {b_i}^2 + {a_i}^2 {b_j}^2 + {a_i}^2 {b_k}^2 + {a_j}^2 {b_i}^2 + {a_j}^2 {b_j}^2 + {a_j}^2 {b_k}^2 + {a_k}^2 {b_i}^2 + {a_k}^2 {b_j}^2 } - \paren { {a_i}^2 {b_1}^2 + 2 a_i b_i a_j b_j + {a_j}^2 {b_j}^2 + 2 a_i b_i a_k b_k + {a_k}^2 {b_k}^2 + 2 a_j b_j a_k b_k}\) | subtracting $(4)$ from $(3)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren { {a_i}^2 {b_j}^2 - 2 a_i b_i a_j b_j + {a_j}^2 {b_i}^2} + \paren { {a_k}^2 {b_i}^2 - 2 a_j b_j a_k b_k + {a_i}^2 {b_k}^2} + \paren { {a_j}^2 {b_k}^2 - 2 a_j b_j a_k b_k + {a_k}^2 {b_j}^2}\) | rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a_i b_j - a_j b_i}^2 + \paren {a_k b_i - a_i b_k}^2 + \paren {a_j b_k - a_k b_j}^2\) | Square of Difference |
To simplify subsequent algebra, let us define $u$:
\(\ds u\) | \(:=\) | \(\ds \paren {\norm {\mathbf a} \norm {\mathbf b} }^2 - \paren {\mathbf a \cdot \mathbf b}^2\) | ||||||||||||
\(\text {(5)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \mathbf a \times \mathbf b\) | \(=\) | \(\ds \sqrt u \, \mathbf {\hat n}\) | substituting back into $(2)$ |
Let $\mathbf {\hat n} = \begin {bmatrix} n_i \\ n_j \\ n_k \end {bmatrix}$
Now, by definition $2$ of the cross product:
\(\ds \norm {\mathbf {\hat n} }\) | \(=\) | \(\ds 1\) | by hypothesis | |||||||||||
\(\ds \mathbf {\hat n} \cdot \mathbf a\) | \(=\) | \(\ds 0\) | Dot Product of Perpendicular Vectors | |||||||||||
\(\ds \mathbf {\hat n} \cdot \mathbf b\) | \(=\) | \(\ds 0\) | Dot Product of Perpendicular Vectors |
Hence by definition of dot product:
\(\text {(6)}: \quad\) | \(\ds \sqrt { {n_i}^2 + {n_j}^2 + {n_k}^2}\) | \(=\) | \(\ds 1\) | |||||||||||
\(\text {(7)}: \quad\) | \(\ds n_i a_i + n_j a_j + n_k a_k\) | \(=\) | \(\ds 0\) | |||||||||||
\(\text {(8)}: \quad\) | \(\ds n_i b_i + n_j b_j + n_k b_k\) | \(=\) | \(\ds 0\) | |||||||||||
\(\text {(9)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds n_i\) | \(=\) | \(\ds \frac {-n_j a_j - n_k a_k} {a_i}\) | from $(7)$ | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {-n_j a_j b_i} {a_i} - \frac {n_k a_k b_i} {a_i} + n_j b_j + n_k b_k\) | \(=\) | \(\ds 0\) | substituting into $(8)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds n_j \paren {\frac {a_i b_j - a_j b_i} {a_i} }\) | \(=\) | \(\ds n_k \paren {\frac {a_k b_i - a_i b_k} {a_i} }\) | splitting fractions and distributing $b_i$ | ||||||||||
\(\text {(10)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds n_j\) | \(=\) | \(\ds n_k \paren {\frac {a_k b_i - a_i b_k} {a_i b_j - a_j b_i} }\) | multiplying both sides by $\dfrac {a_i} {a_i b_j - a_j b_i}$ | |||||||||
\(\ds \leadsto \ \ \) | \(\ds n_i\) | \(=\) | \(\ds \frac {-n_k \paren {\dfrac {a_k b_i - a_i b_k} {a_i b_j - a_j b_i} } a_j - n_k a_k} {a_i}\) | substituting into $(9)$ | ||||||||||
\(\ds \) | \(=\) | \(\ds n_k \paren {\dfrac {a_j a_i b_k - a_j b_i a_k - a_k a_i b_j + a_k b_i a_j} {a_i b_j - a_j b_i} } \paren {\frac 1 {a_i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n_k \paren {\dfrac {a_i \paren {a_j b_k - a_k b_j} } {a_i b_j - a_j b_i} } \paren {\frac 1 {a_i} }\) | ||||||||||||
\(\text {(11)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds n_i\) | \(=\) | \(\ds n_k \paren {\frac {a_j b_k - a_k b_j} {a_i b_j - a_j b_i} }\) |
Then:
\(\ds \sqrt {\paren {n_k \paren {\frac {a_j b_k - a_k b_j} {a_i b_j - a_j b_i} } }^2 + \paren {n_k \paren {\frac {a_k b_i - a_i b_k} {a_i b_j - a_j b_i} } }^2 + \paren {n_k \paren {\frac {a_i b_j - a_j b_i} {a_i b_j - a_j b_i} } }^2}\) | \(=\) | \(\ds 1\) | substituting from $(10)$ and $(11)$ into $(6)$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sqrt { {n_k}^2 \paren {\frac {\paren {a_j b_k - a_k b_j}^2 + \paren {a_k b_i - a_i b_k}^2 + \paren {a_i b_j - a_j b_i}^2} {\paren {a_i b_j - a_j b_i}^2} } }\) | \(=\) | \(\ds 1\) | rearranging | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds n_k \paren {\frac {\sqrt u} {a_i b_j - a_j b_i} }\) | \(=\) | \(\ds 1\) | as the numerator is $u$ | ||||||||||
\(\text {(12)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds n_k\) | \(=\) | \(\ds \frac {a_i b_j - a_j b_i} {\sqrt u}\) |
Substituting from $(12)$ into $(11)$:
\(\ds n_i\) | \(=\) | \(\ds \frac {a_i b_j - a_j b_i} {\sqrt u} \paren {\frac {a_j b_k - a_k b_j} {a_i b_j - a_j b_i} }\) | ||||||||||||
\(\text {(13)}: \quad\) | \(\ds \) | \(=\) | \(\ds \frac {a_j b_k - a_k b_j} {\sqrt u}\) |
and from $(12)$ into $(10)$:
\(\ds n_j\) | \(=\) | \(\ds \frac {a_i b_j - a_j b_i} {\sqrt u} \paren {\frac {a_k b_i - a_i b_k} {a_i b_j - a_j b_i} }\) | ||||||||||||
\(\text {(14)}: \quad\) | \(\ds \) | \(=\) | \(\ds \frac {a_k b_i - a_i b_k} {\sqrt u}\) |
Hence from $(12)$, $(13)$ and $(14)$ we have the components of $\mathbf {\hat n}$:
\(\ds \mathbf {\hat n}\) | \(=\) | \(\ds \begin {bmatrix} \dfrac {a_j b_k - a_k b_j} {\sqrt u} \\ \dfrac {a_k b_i - a_i b_k} {\sqrt u} \\ \dfrac {a_i b_j - a_j b_i} {\sqrt u} \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\sqrt u} \begin {bmatrix} a_j b_k - a_k b_j \\ a_k b_i - a_i b_k \\ a_i b_j - a_j b_i \end {bmatrix}\) |
Substituting back into $(5)$:
\(\ds \mathbf a \times \mathbf b\) | \(=\) | \(\ds \sqrt u \frac 1 {\sqrt u} \begin {bmatrix} a_j b_k - a_k b_j \\ a_k b_i - a_i b_k \\ a_i b_j - a_j b_i \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} a_j b_k - a_k b_j \\ a_k b_i - a_i b_k \\ a_i b_j - a_j b_i \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a_j b_k - a_k b_j} \mathbf i + \paren {a_k b_i - a_i b_k} \mathbf j + \paren {a_i b_j - a_j b_i} \mathbf k\) | in component form | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a_j b_k - a_k b_j} \mathbf i - \paren {a_i b_k - a_k b_i} \mathbf j + \paren {a_i b_j - a_j b_i}\mathbf k\) |
Hence the result.
$\blacksquare$
Sources
- 1951: B. Hague: An Introduction to Vector Analysis (5th ed.) ... (previous) ... (next): Chapter $\text {II}$: The Products of Vectors: $6$. Application to Vector Products
- 1957: D.E. Rutherford: Vector Methods (9th ed.) ... (previous) ... (next): Chapter $\text I$: Vector Algebra: $\S 3$: $(9)$