Equivalence of Definitions of Vector Projection

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Vector Projection are equivalent:

Definition 1

The (vector) projection of $\mathbf u$ onto $\mathbf v$, denoted $\proj_\mathbf v \mathbf u$, is the orthogonal projection of $\mathbf u$ onto a straight line which is parallel to $\mathbf v$.


Hence $\proj_\mathbf v \mathbf u$ is a like vector to $\mathbf v$ whose length is $\norm {\mathbf u} \cos \theta$, where:

$\norm {\mathbf u}$ is the magnitude of $\mathbf u$
$\cos \theta$ is the angle between $\mathbf u$ and $\mathbf v$.

Definition 2

The (vector) projection of $\mathbf u$ onto $\mathbf v$ is defined and denoted:

$\proj_\mathbf v \mathbf u = \dfrac {\mathbf u \cdot \mathbf v} {\norm {\mathbf v}^2} \mathbf v$

where:

$\cdot$ denotes the dot product
$\norm {\mathbf v}$ denotes the magnitude of $\mathbf v$.

Definition 3

The (vector) projection of $\mathbf u$ onto $\mathbf v$ is defined and denoted:

$\proj_\mathbf v \mathbf u = u_{\parallel \mathbf v} \mathbf {\hat v}$

where:

$u_{\parallel \mathbf v}$ denotes the scalar projection of $\mathbf u$ on $\mathbf v$
$\mathbf {\hat v}$ denotes the unit vector in the direction of $\mathbf v$.


Proof

$(2) \iff (3)$

\(\ds \norm {\mathbf u} \norm {\mathbf v} \cos \theta\) \(=\) \(\ds \mathbf u \cdot \mathbf v\) Definition of Dot Product
\(\ds \leadsto \ \ \) \(\ds \norm {\mathbf u} \cos \theta\) \(=\) \(\ds \dfrac {\mathbf u \cdot \mathbf v} {\norm {\mathbf v} }\)
\(\ds \) \(=\) \(\ds u_{\parallel \mathbf v}\) Definition 2 of Scalar Projection
\(\ds \leadsto \ \ \) \(\ds u_{\parallel \mathbf v} \mathbf {\hat v}\) \(=\) \(\ds \dfrac {\mathbf u \cdot \mathbf v} {\norm {\mathbf v} } \mathbf {\hat v}\)
\(\ds \) \(=\) \(\ds \dfrac {\mathbf u \cdot \mathbf v} {\norm {\mathbf v} } \dfrac {\mathbf v} {\norm {\mathbf v} }\) Unit Vector in Direction of Vector
\(\ds \) \(=\) \(\ds \dfrac {\mathbf u \cdot \mathbf v} {\norm {\mathbf v}^2} \mathbf v\)

$\Box$


$(1) \iff (3)$

By definition $1$ of vector projection:

$\proj_\mathbf v \mathbf u$ is a like vector to $\mathbf v$ whose length is $\norm {\mathbf u} \cos \theta$

This is obtained by creating a vector quantity:

$\paren {\norm {\mathbf u} \cos \theta} \mathbf {\hat v}$

where $\mathbf {\hat v}$ is the unit vector in the direction of $\mathbf v$.

But by Definition 1 of Scalar Projection:

$u_{\parallel \mathbf v} = \norm {\mathbf u} \cos \theta$

$\blacksquare$