Equivalent Norms on Rational Numbers/Sufficient Condition

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ be norms on the rational numbers $\Q$.

Let $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ satisfy:

$\exists \alpha \in \R_{\gt 0}: \forall n \in \N: \norm n_1 = \norm n_2^\alpha$


Then $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ are equivalent


Proof

Let $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ satisfy:

$\exists \alpha \in \R_{\gt 0}: \forall n \in \N: \norm n_1 = \norm n_2^\alpha$


By Norm of Negative then:

$\forall n \in \N: \norm {-n}_1 = \norm n_1 = \norm n_2^\alpha = \norm {-n}_2^\alpha$

Hence:

$\forall k \in \Z: \norm k_1 = \norm k_2^\alpha$


By Norm of Quotient then:

$\forall \dfrac a b \in \Q: \norm {\dfrac a b}_1 = \dfrac {\norm a_1} {\norm b_1} = \dfrac {\norm a_2^\alpha} {\norm b_2^\alpha} = \norm {\dfrac a b}_2^\alpha$


By Norm is Power of Other Norm then $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ are equivalent.

$\blacksquare$


Sources