Equivalent Sets have Equal Cardinal Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $\card S$ denote the cardinal number of $S$.


Then:

$S \sim T \implies \card S = \card T$


Proof

Let $x$ be an arbitrary set that is an ordinal:

\(\ds S\) \(\sim\) \(\ds T\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds S \sim x\) \(\iff\) \(\ds T \sim x\) Set Equivalence behaves like Equivalence Relation
\(\ds \leadsto \ \ \) \(\ds \set {x \in \On : S \sim x}\) \(=\) \(\ds \set {x \in \On : T \sim x}\) Definition of Class Equality
\(\ds \leadsto \ \ \) \(\ds \bigcap \set {x \in \On : S \sim x}\) \(=\) \(\ds \bigcap \set {x \in \On : T \sim x}\) Substitutivity of Class Equality
\(\ds \leadsto \ \ \) \(\ds \card S\) \(=\) \(\ds \card t\) Definition of Cardinal Number

$\blacksquare$


Sources