Euclidean Algorithm/Examples/2145 and 1274

From ProofWiki
Jump to navigation Jump to search

Examples of Use of Euclidean Algorithm

The GCD of $2145$ and $1274$ is:

$\gcd \set {2145, 1274} = 13$

Hence $13$ can be expressed as an integer combination of $2190$ and $465$:

$13 = 32 \times 1274 - 19 \times 2145$


Proof

\(\text {(1)}: \quad\) \(\ds 2145\) \(=\) \(\ds 1 \times 1274 + 871\)
\(\text {(2)}: \quad\) \(\ds 1274\) \(=\) \(\ds 1 \times 871 + 403\)
\(\text {(3)}: \quad\) \(\ds 871\) \(=\) \(\ds 2 \times 403 + 65\)
\(\text {(4)}: \quad\) \(\ds 403\) \(=\) \(\ds 6 \times 65 + 13\)
\(\text {(5)}: \quad\) \(\ds 65\) \(=\) \(\ds 5 \times 13\)

Thus:

$\gcd \set {2145, 1274} = 13$
\(\ds 13\) \(=\) \(\ds \gcd \set {2145, 1274}\)
\(\ds \) \(=\) \(\ds \gcd \set {1274, 871}\)
\(\ds \) \(=\) \(\ds \gcd \set {871, 403}\)
\(\ds \) \(=\) \(\ds \gcd \set {403, 65}\)
\(\ds \) \(=\) \(\ds \gcd \set {65, 13}\)


Then we have:

\(\ds 13\) \(=\) \(\ds 403 - 6 \times 65\) from $(4)$
\(\ds \) \(=\) \(\ds 403 - 6 \times \paren {871 - 2 \times 403}\) from $(3)$
\(\ds \) \(=\) \(\ds 13 \times 403 - 6 \times 871\)
\(\ds \) \(=\) \(\ds 13 \times \paren {1274 - 871} - 6 \times 871\) from $(2)$
\(\ds \) \(=\) \(\ds 13 \times 1274 - 19 \times 871\)
\(\ds \) \(=\) \(\ds 13 \times 1274 - 19 \times \paren {2145 - 1 \times 1274}\) from $(1)$
\(\ds \) \(=\) \(\ds 32 \times 1274 - 19 \times 2145\)

$\blacksquare$


Sources