Euclidean Metric on Real Number Line is Metric
Jump to navigation
Jump to search
Theorem
The Euclidean metric on the real number line $\R$ is a metric.
Proof 1
The Euclidean metric on the real number line is a special case of the Euclidean metric on the real vector space $\R^n$.
The result follows from Euclidean Metric on Real Vector Space is Metric.
$\blacksquare$
Proof 2
Consider the real number line under the Euclidean metric:
- $M = \struct {\R, d}$
where $d$ is the distance function given by:
- $\map d {x, y} = \size {x - y}$
Proof of Metric Space Axiom $(\text M 1)$
\(\ds \map d {x, x}\) | \(=\) | \(\ds \size {x - x}\) | Definition of $d$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \size 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
So Metric Space Axiom $(\text M 1)$ holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 2)$
\(\ds \map d {x, y} + \map d {y, z}\) | \(=\) | \(\ds \size {x - y} + \size {y - z}\) | Definition of $d$ | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \size {\paren {x - y} + \paren {y - z} }\) | Triangle Inequality for Real Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {x - z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map d {x, z}\) | Definition of $d$ |
So Metric Space Axiom $(\text M 2)$ holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 3)$
\(\ds \map d {x, y}\) | \(=\) | \(\ds \size {x - y}\) | Definition of $d$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {y - x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map d {y, x}\) | Definition of $d$ |
So Metric Space Axiom $(\text M 3)$ holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 4)$
\(\ds x\) | \(\ne\) | \(\ds y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x - y\) | \(\ne\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x - y}\) | \(>\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map d {x, y}\) | \(>\) | \(\ds 0\) | Definition of $d$ |
So Metric Space Axiom $(\text M 4)$ holds for $d$.
$\blacksquare$
Sources
- 1999: Theodore W. Gamelin and Robert Everist Greene: Introduction to Topology (2nd ed.) ... (previous) ... (next): One: Metric Spaces: $1$: Open and Closed Sets