Euclidean Metric on Real Vector Space is Metric
Theorem
The Euclidean metric on a real vector space $\R^n$ is a metric.
Proof 1
The Euclidean metric on $\R^n$ is a special case of the $p$-product metric.
The result follows from $p$-Product Metric on Real Vector Space is Metric.
$\blacksquare$
Proof 2
Consider the Euclidean space $M = \struct {\R^n, d_2}$ where $d_2$ is the distance function given by:
- $\ds \map {d_2} {x, y} = \paren {\sum_{i \mathop = 1}^n \paren {x_i - y_i}^2}^{\frac 1 2}$
where $x = \tuple {x_1, x_2, \ldots, x_n}$ and $y = \tuple {y_1, y_2, \ldots, y_n}$.
Proof of Metric Space Axiom $(\text M 1)$
\(\ds \map {d_2} {x, x}\) | \(=\) | \(\ds \paren {\sum_{i \mathop = 1}^n \paren {x_i - x_i}^2}^{\frac 1 2}\) | Definition of $d_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum_{i \mathop = 1}^n 0^2}^{\frac 1 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
So Metric Space Axiom $(\text M 1)$ holds for $d_2$.
$\Box$
Metric Space Axiom $(\text M 2)$
It is required to be shown:
- $\map {d_2} {x, y} + \map {d_2} {y, z} \ge \map {d_2} {x, z}$
for all $x, y, z \in \R^n$.
Let:
- $(1): \quad z = \tuple {z_1, z_2, \ldots, z_n}$
- $(2): \quad$ all summations be over $i = 1, 2, \ldots, n$
- $(3): \quad x_i - y_i = r_i$
- $(4): \quad y_i - z_i = s_i$.
Thus we need to show that:
- $\ds \paren {\sum \paren {x_i - y_i}^2}^{\frac 1 2} + \paren {\sum \paren {y_i - z_i}^2}^{\frac 1 2} \ge \paren {\sum \paren {x_i - z_i}^2}^{\frac 1 2}$
We have:
\(\ds \map {d_2} {x, y} + \map {d_2} {y, z}\) | \(=\) | \(\ds \paren {\sum \paren {x_i - y_i}^2}^{\frac 1 2} + \paren {\sum \paren {y_i - z_i}^2}^{\frac 1 2}\) | Definition of $d_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum r_i^2}^{\frac 1 2} + \paren {\sum s_i^2}^{\frac 1 2}\) | ||||||||||||
\(\ds \) | \(\ge\) | \(\ds \paren {\sum \paren {r_i + s_i}^2}^{\frac 1 2}\) | Minkowski's Inequality for Sums: index $2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum \paren {x_i - y_i + y_i - z_i}^2}^{\frac 1 2}\) | Definition of $r_i$ and $s_i$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum \paren {x_i - z_i}^2}^{\frac 1 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {d_2} {x, z}\) | Definition of $d_2$ |
So Metric Space Axiom $(\text M 2)$ holds for $d_2$.
$\Box$
Metric Space Axiom $(\text M 3)$
\(\ds \map {d_2} {x, y}\) | \(=\) | \(\ds \paren {\sum \paren {x_i - y_i}^2}^{\frac 1 2}\) | Definition of $d_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum \paren {y_i - x_i}^2}^{\frac 1 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {d_2} {y, x}\) | Definition of $d_2$ |
So Metric Space Axiom $(\text M 3)$ holds for $d_2$.
$\Box$
Metric Space Axiom $(\text M 4)$
\(\ds x\) | \(\ne\) | \(\ds y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists k \in \closedint 1 n: \, \) | \(\ds x_k\) | \(\ne\) | \(\ds y_k\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x_k - y_k\) | \(\ne\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\sum \paren {x_k - y_k}^2}^{\frac 1 2}\) | \(>\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {d_2} {x, y}\) | \(>\) | \(\ds 0\) | Definition of $d_2$ |
So Metric Space Axiom $(\text M 4)$ holds for $d_2$.
$\blacksquare$
Also see
Sources
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{III}$: Metric Spaces: Pythagoras' Theorem
- 1999: Theodore W. Gamelin and Robert Everist Greene: Introduction to Topology (2nd ed.) ... (previous) ... (next): One: Metric Spaces: $1$: Open and Closed Sets