Euler's Formula/Corollary
Jump to navigation
Jump to search
Corollary to Euler's Formula
Let $z \in \C$ be a complex number.
Then:
- $e^{-i z} = \cos z - i \sin z$
where:
- $e^{-i z}$ denotes the complex exponential function
- $\cos z$ denotes the complex cosine function
- $\sin z$ denotes complex sine function
- $i$ denotes the imaginary unit.
Corollary
This result is often presented and proved separately for arguments in the real domain:
- $e^{-i \theta} = \cos \theta - i \sin \theta$
Proof
\(\ds e^{-i z}\) | \(=\) | \(\ds \cos \paren {-z} + i \sin \paren {-z}\) | Euler's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos z + i \sin \paren {-z}\) | Cosine Function is Even | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos z - i \sin z\) | Sine Function is Odd |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$: $\text{(ii)}$: $(4.16)$