Euler's Formula/Real Domain/Proof 5

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\theta \in \R$ be a real number.

Then:

$e^{i \theta} = \cos \theta + i \sin \theta$


Proof

As Sine Function is Absolutely Convergent and Cosine Function is Absolutely Convergent, we have:

\(\ds \cos \theta + i \sin \theta\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \dfrac {\theta^{2 n} } {\paren {2 n}!} + i \sum_{n \mathop = 0}^\infty \paren {-1}^n \dfrac {\theta^{2 n + 1} } {\paren {2 n + 1}!}\) Definition of Complex Cosine Function and Definition of Complex Sine Function
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {\paren {-1}^n \dfrac {\theta^{2 n} } {\paren {2 n}!} + i \paren {-1}^n \dfrac {\theta^{2 n + 1} } {\paren {2 n + 1}!} }\) Sum of Absolutely Convergent Series
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {\dfrac {\paren {i \theta}^{2 n} } {\paren {2 n}!} + \dfrac {\paren {i \theta}^{2 n + 1} } {\paren {2 n + 1}!} }\) Definition of Imaginary Unit
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {i \theta}^n} {n!}\)
\(\ds \) \(=\) \(\ds e^{i \theta}\) Definition of Complex Exponential Function

$\blacksquare$


Sources