Euler's Formula/Real Domain/Proof 6

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\theta \in \R$ be a real number.

Then:

$e^{i \theta} = \cos \theta + i \sin \theta$


Proof

\(\ds \int \frac {\d x} {\sqrt {x^2 + 1} }\) \(=\) \(\ds \map \ln {\sqrt {x^2 + 1} + x }\) Primitive of Reciprocal of Root of x squared plus a squared/Logarithm Form and $a = 1$
\(\ds \int \frac {i\cos \theta \rd \theta } {\sqrt {1 - \sin^2 \theta} }\) \(=\) \(\ds \map \ln {\sqrt {1 - \sin^2 \theta} + i \sin \theta }\) $x = i \sin \theta$; $\d x = i\cos \theta \rd \theta$
\(\ds \int \frac {i\cos \theta \rd \theta } {\sqrt {\cos^2 \theta} }\) \(=\) \(\ds \map \ln {\sqrt {\cos^2 \theta} + i \sin \theta }\) Sum of Squares of Sine and Cosine
\(\ds i\int \rd \theta\) \(=\) \(\ds \map \ln {\cos \theta + i \sin \theta }\)
\(\ds i \theta\) \(=\) \(\ds \map \ln {\cos \theta + i \sin \theta }\)
\(\ds e^{i \theta}\) \(=\) \(\ds \cos \theta + i \sin \theta\)


$\blacksquare$