Euler's Number is Transcendental
Theorem
Euler's Number $e$ is transcendental.
Proof 1
Aiming for a contradiction, suppose there exist integers $a_0, \ldots, a_n$ with $a_0 \ne 0$ such that:
- $(1): \quad a_n e^n + a_{n - 1} e^{n - 1} + \cdots + a_0 = 0$
Define $M$, $M_1, \ldots, M_n$ and $\epsilon_1, \ldots, \epsilon_n$ as follows:
\(\ds M\) | \(=\) | \(\ds \int_0^\infty \frac {x^{p - 1} \sqbrk {\paren {x - 1} \cdots \paren {x - n} }^p e^{-x} } {\paren {p - 1}!} \rd x\) | ||||||||||||
\(\ds M_k\) | \(=\) | \(\ds e^k \int_k^\infty \frac {x^{p - 1} \sqbrk {\paren {x - 1} \cdots \paren {x - n} }^p e^{-x} } {\paren {p - 1}!} \rd x\) | ||||||||||||
\(\ds \epsilon_k\) | \(=\) | \(\ds e^k \int_0^k \frac {x^{p - 1} \sqbrk {\paren {x - 1} \cdots \paren {x - n} }^p e^{-x} } {\paren {p - 1}!} \rd x\) |
where $p$ is a prime number with $p > n$ and $p > \size {a_0}$.
The expression $\sqbrk {\paren {x - 1} \cdots \paren {x - n} }^p$ is a polynomial of degree $n p$ with integer coefficients.
Hence:
\(\ds M\) | \(=\) | \(\ds \sum_{\alpha \mathop = 0}^{n p} \frac {C_\alpha} {\paren {p - 1}!} \int_0^\infty x^{p - 1 + \alpha} e^{-x} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\alpha \mathop = 0}^{n p} C_\alpha \dfrac {\paren {p - 1 + \alpha}!} {\paren {p - 1}!}\) | Gamma Function Extends Factorial |
where $C_\alpha$ are integers and $C_0 = \pm \paren {n!}^p$.
For $\alpha = 0$ we have:
- $C_0 \dfrac {\paren {p - 1}!} {\paren {p - 1}!} = \pm \paren {n!}^p$
Since $p > n$, it follows from Prime iff Coprime to all Smaller Positive Integers and Euclid's Lemma that this term is not divisible by $p$.
For $\alpha \ge 1$ we have:
- $C_\alpha \dfrac {\paren {p - 1 + \alpha}!} {\paren {p - 1}!} = C_\alpha \paren {p - 1 + \alpha} \paren {p - 2 + \alpha} \cdots p$
which is clearly divisible by $p$.
It follows from Common Divisor Divides Difference that $M$ is an integer not divisible by $p$.
We also have:
\(\ds M_k\) | \(=\) | \(\ds \int_k^\infty \frac {x^{p - 1} \sqbrk {\paren {x - 1} \cdots \paren {x - n} }^p e^{-\paren {x - k} } } {\paren {p - 1}!} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^\infty \frac {\paren {x + k}^{p - 1} \sqbrk {\paren {x + k - 1} \cdots \paren {x + k - n} }^p e^{- x} } {\paren {p - 1}!} \rd x\) | substituting $x - k \mapsto x$ |
The expression $\sqbrk {\paren {x + k - 1} \cdots \paren {x + k - n} }$ is divisible by $x$.
So $\paren {x + k}^{p - 1} \sqbrk {\paren {x + k - 1} \cdots \paren {x + k - n} }^p$ is a polynomial of degree at least $p$ with integer coefficients.
Hence:
\(\ds M_k\) | \(=\) | \(\ds \sum_{\alpha \mathop = 1}^{n p} \frac {D_{\alpha} } {\paren {p - 1}!} \int_0^\infty x^{p - 1 + \alpha} e^{-x} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\alpha \mathop = 1}^{n p} D_{\alpha} \frac {\paren {p - 1 + \alpha}!} {\paren {p - 1}!}\) | Gamma Function Extends Factorial |
where $D_\alpha$ are integers.
Since this sum begins with $\alpha = 1$, each term is divisible by $p$.
Thus each $M_k$ is an integer divisible by $p$.
By the above definitions we have:
- $e^k = \dfrac {M_k + \epsilon_k} M$
Substituting this into $(1)$ and multiplying by $M$ we obtain:
- $\paren {a_0 M + a_1 M_1 + \cdots + a_n M_n} + \paren {a_1 \epsilon_1 + \cdots + a_n \epsilon_n} = 0$
Since $p > \size {a_0}$, it follows from Prime iff Coprime to all Smaller Positive Integers that $p$ does not divide $a_0$.
So by Euclid's Lemma, $a_0 M$ is not divisible by $p$.
Since each $M_k$ is divisible by $p$, it follows from Common Divisor Divides Difference that $a_0 M + a_1 M_1 + \cdots + a_n M_n$ is not divisible by $p$.
Therefore $a_0 M + a_1 M_1 + \cdots + a_n M_n$ is a non-zero integer.
We also have:
\(\ds \size {\epsilon_k}\) | \(=\) | \(\ds e^k \size {\int_0^k \frac {x^{p - 1} \sqbrk {\paren {x - 1} \cdots \paren {x - n} }^p e^{-x} } {\paren {p - 1}!} \rd x}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds e^k \int_0^k \frac {\size {x^{p - 1} \sqbrk {\paren {x - 1} \cdots \paren {x - n} }^p} e^{-x} } {\paren {p - 1}!} \rd x\) | Absolute Value of Definite Integral | |||||||||||
\(\ds \) | \(\le\) | \(\ds e^n \int_0^n \frac {n^{p - 1} \size {\sqbrk {\paren {x - 1} \cdots \paren {x - n} }^p} e^{-x} } {\paren {p - 1}!} \rd x\) | Relative Sizes of Definite Integrals |
Let $A$ be the maximum value of $\size {\paren {x - 1} \cdots \paren {x - n} }$ for $x$ in the interval $\closedint 0 n$.
Then:
\(\ds \size {\epsilon_k}\) | \(\le\) | \(\ds \frac {e^n n^{p - 1} A^p} {\paren {p - 1}!} \int_0^n e^{-x} \rd x\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \frac {e^n n^{p - 1} A^p} {\paren {p - 1}!} n\) | as $e^{- x} \le 1$ for $x \ge 0$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds \frac {e^n \paren {n A}^p} {p!}\) |
- $\ds \lim_{p \mathop \to \infty} \frac {e^n \paren {n A}^p} {p!} = 0$
So $\size {\epsilon_k}$, and therefore $\size {a_1 \epsilon_1 + \cdots + a_n \epsilon_n}$, can be made arbitrarily small by choosing $p$ sufficiently large.
It follows that $\paren {a_0 M + a_1 M_1 + \cdots + a_n M_n} + \paren {a_1 \epsilon_1 + \cdots + a_n \epsilon_n}$ is non-zero.
This is a contradiction, so $e$ must be transcendental.
$\blacksquare$
Proof 2
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
$\blacksquare$
Historical Note
The transcendental nature of Euler's number $e$ was conjectured by Joseph Liouville in $1844$, after he had proved that it was not the root of a quadratic equation with integer coefficients.
The proof that $e$ is transcendental was first achieved by Charles Hermite in $1873$.
Sources
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $8$: Field Extensions: $\S 38$. Simple Algebraic Extensions: Example $77$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: $\S 1.13$: Irrational Numbers
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Solved Problems: Miscellaneous Problems: $47$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $2 \cdotp 718 \, 281 \, 828 \, 459 \, 045 \, 235 \, 360 \, 287 \, 471 \, 352 \, 662 \, 497 \, 757 \, 247 \, 093 \, 699 \ldots$
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {A}.29$: Liouville ($\text {1809}$ – $\text {1882}$)
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $2 \cdotp 71828 \, 18284 \, 59045 \, 23536 \, 02874 \, 71352 \, 66249 \, 77572 \, 47093 \, 69995 \ \ldots$