Euler Phi Function of 666 equals Product of Digits

From ProofWiki
Jump to navigation Jump to search

Theorem

The number $666$ has the following interesting property:

$\map \phi {666} = 6 \times 6 \times 6$

where $\phi$ denotes the Euler $\phi$ function.


Proof

From Euler Phi Function of Integer:

$\ds \map \phi n = n \prod_{p \mathop \divides n} \paren {1 - \frac 1 p}$

where $p \divides n$ denotes the primes which divide $n$.


We have that:

$666 = 2 \times 3^2 \times 37$


Thus:

\(\ds \map \phi {666}\) \(=\) \(\ds 666 \paren {1 - \dfrac 1 2} \paren {1 - \dfrac 1 3} \paren {1 - \dfrac 1 {37} }\)
\(\ds \) \(=\) \(\ds 666 \times \frac 1 2 \times \frac 2 3 \times \frac {36} {37}\)
\(\ds \) \(=\) \(\ds 3 \times 1 \times 2 \times 36\)
\(\ds \) \(=\) \(\ds 3 \times 2 \times \paren {2^2 \times 3^2}\)
\(\ds \) \(=\) \(\ds 216\)
\(\ds \) \(=\) \(\ds 6 \times 6 \times 6\)

$\blacksquare$


Also see


Sources