Existence and Uniqueness of Positive Root of Positive Real Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a real number such that $x \ge 0$.

Let $n \in \Z$ be an integer such that $n \ne 0$.


Then there always exists a unique $y \in \R: \paren {y \ge 0} \land \paren {y^n = x}$.

Hence the justification for the terminology the positive $n$th root of $x$ and the notation $x^{1/n}$.


Positive Exponent

Let $x \in \R$ be a real number such that $x \ge 0$.

Let $n \in \Z$ be an integer such that $n > 0$.


Then there always exists a unique $y \in \R: \paren {y \ge 0} \land \paren {y^n = x}$.


Negative Exponent

Let $x \in \R$ be a real number such that $x \ge 0$.

Let $n \in \Z$ be an integer such that $n < 0$.


Then there always exists a unique $y \in \R: \paren {y \ge 0} \land \paren {y^n = x}$.


Proof

The result follows from Existence of Positive Root of Positive Real Number and Uniqueness of Positive Root of Positive Real Number.

$\blacksquare$


Sources