Existence of Euler-Mascheroni Constant/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

The real sequence:

$\ds \sequence {\sum_{k \mathop = 1}^n \frac 1 k - \ln n}$

converges to a limit.


This limit is known as the Euler-Mascheroni constant.


Proof

For $n \in \N_{>0}$ let:

$\ds \gamma_n := \sum_{k \mathop = 1}^n \frac 1 k - \ln n$

Then:

\(\ds \gamma_n\) \(=\) \(\ds 1 + \int_1^n \dfrac {\floor u} {u^2} \rd u - \ln n\) Integral Expression of Harmonic Number
\(\ds \) \(=\) \(\ds 1 + \int_1^n \dfrac {\floor u} {u^2} \rd u - \int _1 ^n \dfrac 1 u \rd u\) Definition of Real Natural Logarithm
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds 1 - \int_1^n \dfrac {u - \floor u} {u^2} \rd u\) Linear Combination of Definite Integrals
\(\ds \) \(\ge\) \(\ds 1 - \int_1^n \dfrac 1 {u^2} \rd u\) Relative Sizes of Definite Integrals as $0 \le u - \floor u < 1$
\(\ds \) \(=\) \(\ds \dfrac 1 n\)
\(\ds \) \(\ge\) \(\ds 0\)

On the other hand:

\(\ds \gamma_n - \gamma_{n + 1}\) \(=\) \(\ds \paren {1 - \int_1^n \dfrac {u - \floor u} {u^2} \rd u} - \paren {1 - \int_1^{n + 1} \dfrac {u - \floor u} {u^2} \rd u}\) by $\paren 1$
\(\ds \) \(=\) \(\ds \int_n^{n + 1} \dfrac {u - \floor u} {u^2} \rd u\) Sum of Integrals on Adjacent Intervals for Integrable Functions
\(\ds \) \(\ge\) \(\ds 0\) as $u - \floor u \ge 0$

Thus by monotone convergence theorem, the sequence $\sequence {\gamma_n}$ converges to a limit in $\R_{\ge 0}$.

$\blacksquare$