Existence of Homomorphism between Localizations of Ring

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be a commutative ring with unity.

Let $S, T \subseteq A$ be multiplicatively closed subsets.


The following statements are equivalent:

$(1): \quad$ There exists an $A$-algebra homomorphism $h : A_S \to A_T$ between localizations, the induced homomorphism.
$(2): \quad S$ is a subset of the saturation of $T$.
$(3): \quad$ The saturation of $S$ is a subset of the saturation of $T$.
$(4): \quad$ Every prime ideal meeting $S$ also meets $T$.


Proof

Let $i : A \to A_S$ and $j : A \to A_T$ be the localization homomorphisms.


$(1)$ implies $(2)$

Let $h : A_S \to A_T$ be an $A$-algebra homomorphism.

Then by definition, $j = h \circ i$:

$\xymatrix{

A \ar[d]_i \ar[r]^{j} & A_T\\ A_S \ar[ru]_{h} }$

Let $s \in S$.

By definition of localization, $\map i s$ is a unit of $A_S$.

By Ring Homomorphism Preserves Invertible Elements, $\map j s = \map h {\map i s}$ is a unit of $A_T$.

Thus $s$ is an element of the saturation of $T$.

$\Box$


$(2)$ implies $(1)$

Let $S$ be a subset of the saturation of $T$.

Then its image $j \sqbrk S \subseteq A_T^\times$ consists of units of $A_T$.

By definition of localization at $S$, there exists a unique $A$-algebra homomorphism $h : A_S \to A_T$.

$\Box$


2 implies 3

Let $S$ be a subset of the saturation of $T$.

By definition, its saturation is the smallest saturated multiplicatively closed subset of $A$ containing $S$.

Thus the saturation of $S$ is a subset of the saturation of $T$.

$\Box$


$(3)$ implies $(2)$

By definition, $S$ is a subset of its saturation.

$\Box$


$(3)$ iff $(4)$

By definition, the saturation of $S$ is the complement of the union of prime ideals that are disjoint from $S$:

$\ds \map {\operatorname{Sat} } S = A - \bigcup \set {\mathfrak p \in \Spec A: \mathfrak p \cap S = \O}$

Thus:

\(\ds \map {\operatorname{Sat} } S\) \(\subseteq\) \(\ds \map {\operatorname{Sat} } T\)
\(\ds \leadstoandfrom \ \ \) \(\ds A - \bigcup \set {\mathfrak p \in \Spec A: \mathfrak p \cap S = \O}\) \(\subseteq\) \(\ds A - \bigcup \set {\mathfrak p \in \Spec A: \mathfrak p \cap T = \O}\)
\(\ds \leadstoandfrom \ \ \) \(\ds \bigcup \set {\mathfrak p \in \Spec A: \mathfrak p \cap S = \O}\) \(\supseteq\) \(\ds \bigcup \set {\mathfrak p \in \Spec A: \mathfrak p \cap T = \O}\) Subset iff Complement is Superset of Complement
\(\ds \leadstoandfrom \ \ \) \(\ds \forall \mathfrak p \in \Spec A: \, \) \(\ds \mathfrak p \cap T = \O\) \(\implies\) \(\ds \mathfrak p \subseteq \bigcup \set {\mathfrak q \in \Spec A: \mathfrak q \cap S = \O}\) Sets are Subset iff Union is Subset

To finish, we show that the last statement is equivalent to:

$\forall \mathfrak p \in \Spec A: \mathfrak p \cap T = \O \implies \mathfrak p \cap S = \O$

We show that, for $\mathfrak p \in \Spec A$:

$\ds \mathfrak p \subseteq \bigcup \set {\mathfrak q \in \Spec A: \mathfrak q \cap S = \O} \iff \mathfrak p \cap S = \O$

Let $\mathfrak p \in \Spec A$.

If $\mathfrak p \cap S = \O$, then by Set is Subset of Union:

$\ds \mathfrak p \subseteq \bigcup \set {\mathfrak q \in \Spec A: \mathfrak q \cap S = \O}$

Conversely, let $\ds \mathfrak p \subseteq \bigcup \set {\mathfrak q \in \Spec A: \mathfrak q \cap S = \O}$.

By:

Union of Sets Disjoint with Set
Subset of Disjoint Set

we have $\mathfrak p \cap S = \O$.

We conclude that $\map {\operatorname{Sat} } S \subseteq \map {\operatorname{Sat} } T$ if and only if

$\forall \mathfrak p \in \Spec A: \mathfrak p \cap T = \O \implies \mathfrak p \cap S = \O$

That is:

$\forall \mathfrak p \in \Spec A: \mathfrak p \cap S \ne \O \implies \mathfrak p \cap T \ne \O$

$\blacksquare$


Also see