Existence of Non-Empty Finite Suprema in Join Semilattice

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \preceq}$ be a join semilattice.

Let $A$ be a non-empty finite subset of $S$.

Then $A$ admits a supremum in $\struct {S, \preceq}$.


Proof

We will prove by induction of the cardinality of finite subset of $H$.

Base case

$\forall A \subseteq S: \card A = 1 \implies \exists \sup A$

where $\card A$ denotes the cardinality of $A$.

Let $A \subseteq S$ such that

$\card A = 1$

By Cardinality of Singleton:

$\exists a: A = \set a$

By definition of subset:

$a \in S$

Thus by Supremum of Singleton:

the supremum of $A$ exists in $\struct {S, \preceq}$.


Induction Hypothesis

$n \ge 1 \land \forall A \subseteq S: \card A = n \implies \exists \sup A$


Induction Step

$\forall A \subseteq S: \card A = n + 1 \implies \exists \sup A$

Let $A \subseteq S$ such that:

$\card A = n + 1$

By definition of cardinality of finite set:

$A \sim \N_{< n + 1}$

where $\sim$ denotes set equivalence.

By definition of set equivalence:

there exists a bijection $f: \N_{< n + 1} \to A$

By Restriction of Injection is Injection:

$f \restriction_{\N_{< n} }: \N_{< n} \to f^\to \sqbrk {\N_{< n} }$ is an injection.

By definition:

$f \restriction_{\N_{< n} }: \N_{< n} \to f^\to \sqbrk {\N_{< n} }$ is a surjection.

By definition:

$f \restriction_{\N_{< n} }: \N_{< n} \to f^\to \sqbrk {\N_{< n} }$ is a bijection.

By definition of set equivalence:

$\N_{< n} \sim f^\to \sqbrk {\N_{< n} }$

By definition of cardinality of finite set:

$\card {f^\to \sqbrk {\N_{< n} } } = n$

By definitions of image of set and subset:

$f^\to \sqbrk {\N_{< n} } \subseteq A$

By Subset Relation is Transitive:

$f^\to \sqbrk {\N_{< n} } \subseteq S$

By Induction Hypothesis:

$\exists \map \sup {f^\to \sqbrk {\N_{< n} } }$

By definition $\N_{< n + 1}$:

$n \in \N_{< n + 1}$

By definition of mapping:

$\map f n \in A$

By definition of subset:

$\map f n \in S$
\(\ds A\) \(=\) \(\ds f^\to \sqbrk {\N_{< n + 1} }\) Definition of Surjection
\(\ds \) \(=\) \(\ds f^\to \sqbrk {\N_{< n} \cup \set n}\) Definition of Initial Segment of Natural Numbers
\(\ds \) \(=\) \(\ds f^\to \sqbrk {\N_{< n} } \cup f^\to \sqbrk {\set n}\) Image of Union under Mapping
\(\ds \) \(=\) \(\ds f^\to \sqbrk {\N_{< n} } \cup \set {\map f n}\) Image of Singleton under Mapping

Thus:

\(\ds \sup A\) \(=\) \(\ds \sup \set {\map \sup {f^\to \sqbrk {\N_{< n} } }, \sup \set {\map f n} }\) Supremum of Suprema
\(\ds \) \(=\) \(\ds \sup \set {\map \sup {f^\to \sqbrk {\N_{< n} } }, \map f n}\) Supremum of Singleton
\(\ds \) \(=\) \(\ds \map \sup {f^\to \sqbrk {\N_{< n} } } \vee \map f n\) Definition of Join

Thus $A$ admits a supremum in $\struct {S, \preceq}$.

$\blacksquare$


Sources