Expectation of Poisson Distribution/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a discrete random variable with the Poisson distribution with parameter $\lambda$.


Then the expectation of $X$ is given by:

$\expect X = \lambda$


Proof

From Probability Generating Function of Poisson Distribution:

$\map {\Pi_X} s = e^{-\lambda \paren {1 - s} }$


From Expectation of Discrete Random Variable from PGF:

$\expect X = \map {\Pi'_X} 1$


We have:

\(\ds \map {\Pi'_X} s\) \(=\) \(\ds \frac \d {\d s} e^{-\lambda \paren {1 - s} }\)
\(\ds \) \(=\) \(\ds \lambda e^{- \lambda \paren {1 - s} }\) Derivatives of PGF of Poisson Distribution


Plugging in $s = 1$:

$\map {\Pi'_X} 1 = \lambda e^{- \lambda \paren {1 - 1} } = \lambda e^0$


Hence the result from Exponential of Zero:

$e^0 = 1$

$\blacksquare$


Sources