Exponential Form of Complex Conjugate

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z := r e^{i \theta} \in \C$ be a complex number expressed in exponential form.


Then:

$\overline z = r e^{-i \theta}$

where $\overline z$ denotes the complex conjugate of $z$.


Proof

\(\ds z\) \(=\) \(\ds r e^{i \theta}\)
\(\ds \) \(=\) \(\ds r \paren {\cos \theta + i \sin \theta}\) Euler's Formula
\(\ds \leadsto \ \ \) \(\ds \overline z\) \(=\) \(\ds r \paren {\cos \theta - i \sin \theta}\) Polar Form of Complex Conjugate
\(\ds \) \(=\) \(\ds r e^{-i \theta}\) Corollary to Euler's Formula

$\blacksquare$


Sources