Factorization Lemma

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a set.

Let $\struct {Y, \Sigma}$ be a measurable space.

Let $f: X \to Y$ be a mapping.


Real-Valued Function

Then a mapping $g: X \to \R$ is $\map \sigma f \, / \, \map \BB \R$-measurable if and only if:

There exists a $\Sigma \, / \, \map \BB \R$-measurable mapping $\tilde g: Y \to \R$ such that $g = \tilde g \circ f$

where:

$\map \sigma f$ denotes the $\sigma$-algebra generated by $f$
$\map \BB \R$ denotes the Borel $\sigma$-algebra on $\R$


Extended Real-Valued Function

An extended real-valued function $g: X \to \overline \R$ is $\map \sigma f$-measurable if and only if:

There exists a $\Sigma$-measurable mapping $\tilde g: Y \to \overline \R$ such that $g = \tilde g \circ f$

where:

$\map \sigma f$ denotes the $\sigma$-algebra generated by $f$