Faithful Functor Reflects Monomorphisms

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf C$ and $\mathbf D$ be categories.

Let $F: \mathbf C \to \mathbf D$ be a faithful functor.

Let $x$ and $y$ be objects in $\mathbf C$.

Let $f: x \to y$ be a morphism in $\mathbf C$.

Let $\map F f : \map F x \to \map F y$ be a monomorphism in $\mathbf D$.


Then $f$ is a monomorphism in $\mathbf C$.


Proof

Let $z$ be an object in $\mathbf C$.

Let $g: z \to x$ and $h: z \to x$ be morphisms in $\mathbf C$ such that $f \circ g = f \circ h$.

\(\ds f \circ g\) \(=\) \(\ds f \circ h\)
\(\ds \leadsto \ \ \) \(\ds \map F f \circ \map F g\) \(=\) \(\ds \map F f \circ \map F h\) Definition of Functor
\(\ds \leadsto \ \ \) \(\ds \map F g\) \(=\) \(\ds \map F h\) $\map F f$ is a monomorphism in $\mathbf D$
\(\ds \leadsto \ \ \) \(\ds g\) \(=\) \(\ds h\) Definition of Faithful Functor

Hence $f$ is a monomorphism in $\mathbf C$.

$\blacksquare$