Fibonacci Number in terms of Larger Fibonacci Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $F_k$ be the $k$th Fibonacci number.


Then:

$\forall m, n \in \Z_{>0} : \paren {-1}^n F_{m - n} = F_m F_{n - 1} - F_{m - 1} F_n$


Proof

\(\ds F_{m - n}\) \(=\) \(\ds F_{m + \paren {-n} }\) Definition of Integer Subtraction
\(\ds \) \(=\) \(\ds F_{m - 1} F_{-n} + F_m F_{-n + 1}\) Honsberger's Identity
\(\ds \) \(=\) \(\ds \paren {-1}^{n + 1} F_{m - 1} F_n + \paren {-1}^n F_m F_{n - 1}\) Fibonacci Number with Negative Index
\(\ds \leadsto \ \ \) \(\ds \paren {-1}^n F_{m - n}\) \(=\) \(\ds \paren {-1} F_{m - 1} F_n + F_m F_{n - 1}\) multiplying both sides by $\paren {-1}^n$
\(\ds \) \(=\) \(\ds F_m F_{n - 1} - F_{m - 1} F_n\) simplifying

$\blacksquare$