Fibonacci Number plus Binomial Coefficient in terms of Fibonacci Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m \in \Z_{>0}$ be a positive integer.

Let $\sequence {a_n}$ be the sequence defined as:

$a_n = \begin{cases}

0 & : n = 0 \\ 1 & : n = 1 \\ a_{n - 2} + a_{n - 1} + \dbinom {n - 2} m & : n > 1 \end{cases}$

where $\dbinom {n - 2} m$ denotes a binonial coefficient.


Then $\sequence {a_n}$ can be expressed in Fibonacci numbers as:

$a_n = F_{m + 1} F_{n - 1} + \paren {F_{m + 2} + 1} F_n - \ds \sum_{k \mathop = 0}^m \binom {n + m - k} k$


Proof

The proof proceeds by induction.

For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition:

$a_n = F_{m + 1} F_{n - 1} + \paren {F_{m + 2} + 1} F_n - \ds \sum_{k \mathop = 0}^m \binom {n + m - k} k$


Basis for the Induction

$\map P 0$ is the case:

\(\ds \) \(\) \(\ds F_{m + 1} F_{-1} + \paren {F_{m + 2} + 1} F_0 - \sum_{k \mathop = 0}^m \binom {m - k} k\)
\(\ds \) \(=\) \(\ds F_{m + 1} \paren {-1}^0 F_1 + \paren {F_{m + 2} + 1} F_0 - \sum_{k \mathop = 0}^m \binom {m - k} k\) Fibonacci Number with Negative Index
\(\ds \) \(=\) \(\ds F_{m + 1} - \sum_{k \mathop = 0}^m \binom {m - k} k\) Definition of Fibonacci Number: $F_0 = 0, F_1 = 1$
\(\ds \) \(=\) \(\ds F_{m + 1} - F_{m + 1}\) Sum of Entries in Lesser Diagonal of Pascal's Triangle equal Fibonacci Number: binomial coefficients vanish for $k > m$
\(\ds \) \(=\) \(\ds 0\)
\(\ds \) \(=\) \(\ds a_0\) by definition

Thus $\map P 0$ is seen to hold.


$\map P 1$ is the case:

\(\ds \) \(\) \(\ds F_{m + 1} F_0 + \paren {F_{m + 2} + 1} F_1 - \sum_{k \mathop = 0}^m \binom {1 + m - k} k\)
\(\ds \) \(=\) \(\ds \paren {F_{m + 2} + 1} - \sum_{k \mathop = 0}^m \binom {1 + m - k} k\) Definition of Fibonacci Number: $F_0 = 0, F_1 = 1$
\(\ds \) \(=\) \(\ds F_{m + 2} + 1 - F_{m + 2}\) Sum of Entries in Lesser Diagonal of Pascal's Triangle equal Fibonacci Number: binomial coefficients vanish for $k > m$
\(\ds \) \(=\) \(\ds 1\)
\(\ds \) \(=\) \(\ds a_1\) by definition

Thus $\map P 1$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that, if $\map P {k - 1}$ and $\map P k$ are true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is the induction hypothesis:

$a_{k - 1} = F_{m + 1} F_{k - 2} + \paren {F_{m + 2} + 1} F_{k - 1} - \ds \sum_{r \mathop = 0}^m \binom {k - 1 + m - r} r$
$a_k = F_{m + 1} F_{k - 1} + \paren {F_{m + 2} + 1} F_k - \ds \sum_{r \mathop = 0}^m \binom {k + m - r} r$


from which it is to be shown that:

$a_{k + 1} = F_{m + 1} F_k + \paren {F_{m + 2} + 1} F_{k + 1} - \ds \sum_{r \mathop = 0}^m \binom {k + 1 + m - r} r$


Induction Step

This is the induction step:


\(\ds a_{k + 1}\) \(=\) \(\ds a_{k - 1} + a_k + \binom {k - 1} m\)
\(\ds \) \(=\) \(\ds \paren {F_{m + 1} F_{k - 2} + \paren {F_{m + 2} + 1} F_{k - 1} - \sum_{r \mathop = 0}^m \binom {k - 1 + m - r} r} + \paren {F_{m + 1} F_{k - 1} + \paren {F_{m + 2} + 1} F_k - \sum_{r \mathop = 0}^m \binom {k + m - r} r} + \binom {k - 1} m\) Induction Hypothesis
\(\ds \) \(=\) \(\ds F_{m + 1} \paren {F_{k - 2} + F_{k - 1} } + \paren {F_{m + 2} + 1} \paren {F_{k - 1} + F_k} - \sum_{r \mathop = 0}^m \binom {k + m - \paren {r + 1} } r - \sum_{r \mathop = 0}^m \binom {k + m - r} r + \binom {k - 1} m\) factorizing
\(\ds \) \(=\) \(\ds F_{m + 1} F_k + \paren {F_{m + 2} + 1} F_{k + 1} - \sum_{r \mathop = 0}^m \binom {k + m - \paren {r + 1} } r - \sum_{r \mathop = 0}^m \binom {k + m - r} r + \binom {k - 1} m\) Definition of Fibonacci Number
\(\ds \) \(=\) \(\ds F_{m + 1} F_k + \paren {F_{m + 2} + 1} F_{k + 1} - \sum_{r \mathop = 1}^{m + 1} \binom {k + m - r} {r - 1} - \sum_{r \mathop = 0}^m \binom {k + m - r} r + \binom {k - 1} m\) Translation of Index Variable of Summation
\(\ds \) \(=\) \(\ds F_{m + 1} F_k + \paren {F_{m + 2} + 1} F_{k + 1} - \sum_{r \mathop = 0}^m \binom {k + m - r} {r - 1} + \binom {k + m} {-1} - \binom {k - 1} m - \sum_{r \mathop = 0}^m \binom {k + m - r} r + \binom {k - 1} m\)
\(\ds \) \(=\) \(\ds F_{m + 1} F_k + \paren {F_{m + 2} + 1} F_{k + 1} - \sum_{r \mathop = 0}^m \paren {\binom {k + m - r} {r - 1} + \binom {k + m - r} r}\) N Choose Negative Number is Zero
\(\ds \) \(=\) \(\ds F_{m + 1} F_k + \paren {F_{m + 2} + 1} F_{k + 1} - \sum_{r \mathop = 0}^m \binom {k + 1 + m - r} r\) Pascal's Rule

So $\map P {k - 1} \land \map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall n \in \Z_{\ge 0}: a_n = F_{n - 1} r + F_n s$

$\blacksquare$

Sources