Fibonacci Number with Prime Index 2n+1 is Congruent to 5^n Modulo p

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p = 2 n + 1$ be an odd prime.


Then:

$F_p \equiv 5^n \pmod p$


Proof

From Fibonacci Number by Power of 2:

$2^p F_p = 2 \ds \sum_{k \mathop \in \Z} \dbinom p {2 k + 1} 5^k$

From Binomial Coefficient of Prime:

$\forall k \in \Z: 0 < k < p: \dbinom p k \equiv 0 \pmod p$

and from Fermat's Little Theorem: Corollary 1:

$2^p \equiv 2 \pmod p$

Hence:

\(\ds 2^p F_p\) \(\equiv\) \(\ds 2 F_p\) \(\ds \pmod p\)
\(\ds \leadsto \ \ \) \(\ds 2 \sum_{k \mathop \in \Z} \dbinom p {2 k + 1} 5^k\) \(\equiv\) \(\ds 2 \times 5^n\) as all $\dbinom p k \equiv 0 \pmod p$ except $\dbinom p p$
\(\ds \leadsto \ \ \) \(\ds 2^p F_p\) \(\equiv\) \(\ds 2 \times 5^n\) \(\ds \pmod p\)
\(\ds \leadsto \ \ \) \(\ds F_p\) \(\equiv\) \(\ds 5^n\) \(\ds \pmod p\) because $p \perp 2$

$\blacksquare$


Sources