Field Product with Non-Zero Element yields Unique Solution

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {F, +, \times}$ be a field whose zero is $0_F$ and whose unity is $1_F$.

Let $a, b, x \in F$ such that $b \ne 0_F$.


Let:

$b \times x = a$

Then:

$x = a b^{-1}$

That is:

$x = \dfrac a b$

where $\dfrac a b$ denotes division.


Proof

\(\ds b \times x\) \(=\) \(\ds a\) with $b \ne 0_F$
\(\ds \leadsto \ \ \) \(\ds b^{-1} \times \paren {b \times x}\) \(=\) \(\ds b^{-1} \times a\) multiplying both sides by $b^{-1}$, which exists because $b \ne 0$
\(\ds \leadsto \ \ \) \(\ds \paren {b^{-1} \times b} \times x\) \(=\) \(\ds b^{-1} \times a\) Field Axiom $\text M1$: Associativity of Product
\(\ds \leadsto \ \ \) \(\ds 1_F \times x\) \(=\) \(\ds b^{-1} \times a\) Field Axiom $\text M4$: Inverses for Product
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds b^{-1} \times a\) Field Axiom $\text M3$: Identity for Product

$\blacksquare$


Sources