Finite Hausdorff Measure Implies Zero Higher Dimensional Measure
Jump to navigation
Jump to search
Theorem
Let $n \in \N_{>0}$.
Let $F \subseteq \R^n$ be a subset of the real Euclidean space.
Let $s \in \R_{\ge 0}$.
Let $\map {\HH^s} \cdot$ denote the $s$-dimensional Hausdorff measure.
Then:
- $\map {\HH^s} F < +\infty \implies \forall t \in \R_{>s} : \map {\HH^t} F = 0$
Proof
For each $\delta$-cover $\sequence {U_i}$ of $F$:
\(\ds \sum \size {U_i}^t\) | \(=\) | \(\ds \sum \size {U_i}^s \size {U_i}^{t - s}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \delta^{t - s} \sum \size {U_i}^s\) |
Thus:
- $\map {\HH^t_\delta} F \le \delta^{t - s} \map {\HH^s_\delta} F$
Therefore:
\(\ds \map {\HH^t} F\) | \(=\) | \(\ds \lim_{\delta \to 0^+} \map {\HH^t_\delta} F\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \lim_{\delta \to 0^+} \delta^{t - s} \map {\HH^s_\delta} F\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\delta \to 0^+} \delta^{t - s} \cdot \lim_{\delta \to 0^+} \map {\HH^s_\delta} F\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0 \cdot \map {\HH^s} F\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
![]() | This needs considerable tedious hard slog to complete it. In particular: details To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |