Finite Ordinal Times Ordinal

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m$ and $n$ be finite ordinals.

Let $m \ne 0$, where $0$ is the zero ordinal.

Let $x$ be a limit ordinal.


Then:

$m \times \paren {x + n} = x + \paren {m \times n}$



Proof

Lemma

Let $m$ be a finite ordinal.

Let $m \ne 0$, where $0$ is the zero ordinal.


Then:

$m \times \omega = \omega$

where $\omega$ denotes the minimally inductive set.

$\Box$


By Ordinal Multiplication is Left Distributive:

$m \times \paren {x + n} = \paren {m \times x} + \paren {m \times n}$


It remains to prove that $x = m \times x$.


Since $x$ is a limit ordinal, it follows that:

\(\ds \exists y \in \On: \, \) \(\ds x\) \(=\) \(\ds \omega \times y\) Factorization of Limit Ordinals
\(\ds m \times x\) \(=\) \(\ds m \times \paren {\omega \times y}\) Substitutivity of Class Equality
\(\ds m \times x\) \(=\) \(\ds \paren {m \times \omega} \times y\) Ordinal Multiplication is Associative
\(\ds \) \(=\) \(\ds \omega \times y\) lemma

$\blacksquare$


Sources