Fort Space is Sequentially Compact

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \struct {S, \tau_p}$ be a Fort space on an infinite set $S$.


Then $T$ is a sequentially compact space.


Proof

Let $\sequence {x_n}_{n \mathop \in \N}$ be an infinite sequence in $T$.

Suppose $\sequence {x_n}$ takes an infinite number of distinct values in $S$.

Then there is an infinite subsequence $\sequence {x_{n_r} }_{r \mathop \in \N}$ with distinct terms.


Let $U$ be a neighborhood of $p$.

Then $S \setminus U$ is a finite set by definition.

Thus there exists $N \in \N$ such that $\forall r > N: x_{n_r} \in U$.

Thus $\sequence {x_{n_r} }$ converges to $p$.


Otherwise $\sequence {x_n}$ only takes a finite number of distinct values.

Then, since $\sequence {x_n}$ is infinite, there exists $x \in S$ such that:

$\forall N \in \N: \exists n > N: x = x_n$

This implies that we can take a subsequence of $\sequence {x_n}$ which is constant, and which converges to that constant.


We can conclude then that, by definition, $T$ is a sequentially compact space.

$\blacksquare$


Sources