Functionally Complete Logical Connectives/Negation and Conjunction

From ProofWiki
Jump to navigation Jump to search

Theorem

The set of logical connectives:

$\set {\neg, \land}$: Not and And

is functionally complete.



Proof

From Functionally Complete Logical Connectives: Negation, Conjunction, Disjunction and Conditional, all sixteen of the binary truth functions can be expressed in terms of $\neg, \land, \lor, \implies$.


From Conjunction and Conditional, we have that:

$p \implies q \dashv \vdash \neg \paren {p \land \neg q}$

From De Morgan's laws: Disjunction, we have that:

$p \lor q \dashv \vdash \neg \paren {\neg p \land \neg q}$

So any instance of either $\implies$ or $\lor$ can be replaced identically with one using just $\neg$ and $\land$.

It follows that $\set {\neg, \land}$ is functionally complete.

$\blacksquare$


Sources