Gamma Difference Equation/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \Gamma {z + 1} = z \, \map \Gamma z$


Proof

Let $z \in \C$, with $\map \Re z > 0$.

Then:

\(\ds \map \Gamma {z + 1}\) \(=\) \(\ds \int_0^\infty t^z e^{-t} \rd t\)
\(\ds \) \(=\) \(\ds \bigintlimits {-t^z e^{-t} } 0 \infty + z \int_0^\infty t^{z - 1} e^{-t} \rd t\) Integration by Parts
\(\ds \) \(=\) \(\ds z \int_0^\infty t^{z - 1} e^{-t} \rd t\)
\(\ds \) \(=\) \(\ds z \, \map \Gamma z\)


If $z \in \C \setminus \set {0, -1, -2, \ldots}$ such that $\map \Re z \le 0$, then the statement holds by the definition of $\Gamma$ in this region.

$\blacksquare$


Sources