Generalized Sum Preserves Inequality

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\family {a_i}_{i \mathop \in I}, \family {b_i}_{i \mathop \in I}$ be $I$-indexed families of positive real numbers.

That is, let $a_i, b_i \in \R_{\ge 0}$ for all $i \in I$.

Suppose that for all $i \in I$, $a_i \le b_i$.

Furthermore, suppose that $\ds \sum \set {b_i: i \in I}$ converges.


Then:

$\ds \sum \set {a_i: i \in I} \le \sum \set {b_i: i \in I}$

In particular, $\ds \sum \set {a_i: i \in I}$ converges.


Proof

First, it is proven that $\ds \sum \set {a_i: i \in I}$ converges.

Then, the inequality $\ds \sum \set {a_i: i \in I} \le \sum \set {b_i: i \in I}$ is well-defined, and hence can be proven.


Proof of Convergence

For every $n \in \N$, let $F_n \subseteq I$ be finite such that:

$\ds \sum_{i \mathop \in G} b_i > \sum \set {b_i: i \in I} - 2^{-n}$ for all finite $G$ with $F_n \subseteq G \subseteq I$

By passing over to $\ds F'_n = \bigcup_{i \mathop = 1}^n F_i$ if necessary, it may be arranged that $F_n \subseteq F_m$ for $n \le m$.


Next, define the sequence $\sequence {a_n}_{n \mathop \in \N}$ by $a_n := \ds \sum_{i \mathop \in F_n} a_i$.

To show $\sequence {a_n}_{n \mathop \in \N}$ is a Cauchy sequence, let $\epsilon > 0$.

Subsequently let $N \in \N$ be such that $2^{-N} < \epsilon$, and let $m \ge n \ge N$. Then:

\(\ds \map d {a_m, a_n}\) \(=\) \(\ds \size {\paren {\sum_{i \mathop \in F_m} a_i} - \paren {\sum_{i \mathop \in F_n} a_i} }\) Definition of Metric Induced by Norm
\(\ds \) \(=\) \(\ds \size {\sum_{i \mathop \in F_m \mathop \setminus F_n} a_i}\) $F_n \subseteq F_m$
\(\ds \) \(\le\) \(\ds \sum_{i \mathop \in F_m \mathop \setminus F_n} b_i\) $b_i \ge a_i \ge 0$ for all $i \in I$


Now to estimate this last quantity, observe:

\(\ds \sum \set {b_i : i \in I} - 2^{-n} + \sum_{i \mathop \in F_m \mathop \setminus F_n} b_i\) \(<\) \(\ds \sum_{i \mathop \in F_n} b_i + \sum_{i \mathop \in F_m \mathop \setminus F_n} b_i\) Definition of $F_n$
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in F_m} b_i\) Union with Relative Complement, $F_n \subseteq F_m$
\(\ds \) \(\le\) \(\ds \sum \set {b_i : i \in I}\) Generalized Sum is Monotone
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop \in F_m \mathop \setminus F_n} b_i\) \(<\) \(\ds 2^{-n}\)


Finally, as $n \ge N, 2^{-n} < 2^{-N} < \epsilon$ (by defining property of $N$).

Combining all of these estimates leads to the conclusion that $\map d {a_m, a_n} < \epsilon$.

It follows that $\sequence {a_n}_{n \mathop \in \N}$ is a Cauchy sequence.

By Real Number Line is Complete Metric Space, this implies there exists an $a \in \R$ such that $\ds \lim_{n \mathop \to \infty} a_n = a$.


Having identified a candidate $a$ for the sum $\ds \sum \set {a_i: i \in I}$ to converge to, it remains to verify that this is indeed the case.


According to the definition of considered sum, the convergence is convergence of a net.

Next, Metric Induces Topology ensures that we can limit the choice of opens $U$ containing $a$ to open balls centered at $a$.

Now let $\epsilon > 0$.

We want to find a finite $F \subseteq I$ such that:

$\map d {\ds \sum_{i \mathop \in G} a_i, a} < \epsilon$, for all finite $G$ with $F \subseteq G \subseteq I$


Now let $N \in \N$ such that for all $n \ge N$, $\map d {v_n, v} < \dfrac \epsilon 2$ (with the $v_n$ as above).

By taking a larger $N$ if necessary, ensure that $2^{-N} < \dfrac \epsilon 2$ holds as well.

Let us verify that the set $F_N$ defined above has the sought properties.

So let $G$ be finite with $F_N \subseteq G \subseteq I$. Then:

\(\ds \map d {\sum_{i \mathop \in G} a_i, a}\) \(=\) \(\ds \size {\paren {\sum_{i \mathop \in G} a_i} - a}\) Definition of Metric Induced by Norm
\(\ds \) \(\le\) \(\ds \size {\paren {\sum_{i \mathop \in G} a_i} - \paren {\sum_{i \mathop \in F_N} a_i} } + \size {\paren {\sum_{i \mathop \in F_N} a_i} - a}\) Triangle Inequality
\(\ds \) \(<\) \(\ds \size {\sum_{i \mathop \in G \mathop \setminus F_N} a_i} + \frac \epsilon 2\) $F_N \subseteq G$, defining property of $N$
\(\ds \) \(\le\) \(\ds \sum_{i \mathop \in G \mathop \setminus F_N} b_i + \frac \epsilon 2\) $b_i \ge a_i \ge 0$ for all $i \in I$


For the first of these terms, observe:

\(\ds \sum \set {b_i: i \in I} - 2^{-N} + \sum_{i \mathop \in G \mathop \setminus F_N} b_i\) \(<\) \(\ds \sum_{i \mathop \in F_N} b_i + \sum_{i \mathop \in G \mathop \setminus F_N} b_i\) Defining property of $F_N$
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in G} b_i\) Union with Relative Complement, $F_N \subseteq G$
\(\ds \) \(\le\) \(\ds \sum \set {b_i: i \in I}\) Generalized Sum is Monotone
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop \in G \mathop \setminus F_N} b_i\) \(<\) \(\ds 2^{-N}\)


Using that $2^{-N} < \dfrac \epsilon 2$, combine these inequalities to obtain:

$\ds \map d {\sum_{i \mathop \in G} a_i, a} < \frac \epsilon 2 + \frac \epsilon 2 = \epsilon$


By definition of convergence of a net, it follows that:

$\ds \sum \set {a_i: i \in I} = a$

$\Box$


Proof of Inequality

Aiming for a contradiction, suppose $\ds \sum \set {a_i: i \in I} > \sum \set {b_i: i \in I}$.

Then, as the sums converge, there exists a finite $F \subseteq I$ such that:

$\ds \sum_{i \mathop \in F} a_i > \sum \set {a_i: i \in I} - \epsilon$

for every $\epsilon > 0$.

So by picking a suitable $\epsilon$, it may be arranged that:

\(\ds \sum \set { b_i: i \in I}\) \(<\) \(\ds \sum \set {a_i: i \in I} - \epsilon\)
\(\ds \) \(<\) \(\ds \sum_{i \mathop \in F} a_i\) Defining property of $F$
\(\ds \) \(\le\) \(\ds \sum_{i \mathop \in F} b_i\) $a_i \le b_i$ for all $i$
\(\ds \) \(\le\) \(\ds \sum \set {b_i: i \in I}\) Generalized Sum is Monotone


These inequalities together constitute a contradiction, and therefore:

$\ds \sum \set {a_i: i \in I} \le \sum \set {b_i: i \in I}$

$\blacksquare$