Generating Function by Power of Parameter

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map G z$ be the generating function for the sequence $\sequence {a_n}$.

Let $m \in \Z_{\ge 0}$ be a non-negative integer.


Then $z^m \map G z$ is the generating function for the sequence $\sequence {a_{n - m} }$.


Proof

\(\ds z^m \map G z\) \(=\) \(\ds z^m \sum_{n \mathop \ge 0} a_n z^n\) Definition of Generating Function
\(\ds \) \(=\) \(\ds \sum_{n \mathop \ge 0} a_n z^{n + m}\)
\(\ds \) \(=\) \(\ds \sum_{n + m \mathop \ge 0} a_{n - m} z^n\) Translation of Index Variable of Summation
\(\ds \) \(=\) \(\ds \sum_{n \mathop \ge m} a_{n - m} z^n\)


By letting $a_n = 0$ for all $n < 0$:

$z^m \map G z = \ds \sum_{n \mathop \ge 0} a_{n - m} z^n$

Hence the result.

$\blacksquare$


Sources